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The guantum-mechanical investigation of nonlinear resonance in terms of approximation to moderate non-
linearity is reduced to the investigation of eigenfunctions and eigenvalues of the Mathieu-Schrodinger equa-
tion. The eigenstates of the Mathieu-Schrodinger equation are nondegenerate in a certain area of pumping
amplitude values in the neighborhood of the classical separatrix. Outside this area, the system finds itself in a
degenerate state for both small and large pumping amplitude values. Degenerate energy terms arise as a result
of merging and branching of pairs of nondegenerate energy terms. Equations are obtained for finding the
merging points of energy terms. These equations are solved by numerical methods. The main objective of this
paper is to establish a quantum analog of the classical stochastic layer formed in the separatrix area. With this
end in view, we consider a nonstationary quantum-mechanical problem of perturbation of the state of the
Mathieu-Schrodinger equation. It is shown that in passing through the branching point the system may pass
from the pure state to the mixed one. At multiple passages through branching points there develops the
irreversible process of “creeping” of the system to quantum states. In that case, the observed population of a
certain number of levels can be considered, in our opinion, to be a quantum analog of the stochastic layer. The
number of populated levels is defined by a perturbation amplitude.
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I. INTRODUCTION: PROBLEM STATEMENT can lead to the mixed state that can be considered as a mani-

Usually, quantum chaos means phenomena arising in fgstation of quantum chaos. The example of the universal
guantum system at those parameter values for which a claglamiltonian considered in this paper is interesting because,

sical analog of the system has properties of dynamic stochadike all integrable systems, it allows us to define precisely all
ticity. The Hamiltonian of such a system is written in the duantum characteristics. However, these characteristics are

form rather complicated to serve as the base of quantum chaos.
R ~ At the classical reviewing the motion generated by the
H=H,+\V, 1) universal Hamiltonian on the phase space consists of two
~ ) o types of topologically distinguished curves divided by the
whereHj is the integrable part of the Hamiltonian. As ex- separatrix[4]. As a consequence of the perturbation of tra-
perimental studies shoyd,2], the main property character- jectories near the separatrix by the periodic perturbation
istic of quantum chaos is the repulsion of quasienergy termgnere arises a stochastic “layer’—the area of stochastic mo-
En(\) at those values of the parameterfor which, in the  tjon near the separatrix. At quantum reviewing Schrodinger
case of classical consideration, there arises dynamic stochasquation for the universal Hamiltonian is represented in the
ticity. Difficulties encountered in studying quantum chaosform of the equation of Mathieu, solutions of whi¢vave
make it necessary to pass from the quantum-mechanical d@inctiong are the periodic functions of Mathieu.
scription to the quantum-statistical one. The general theory The Mathieu equation for the quantum-mechanical de-
of the quantum-statistical description of systems in a state ofcription of the atom, having a nonlinear energy spectrum
chaos is presented in the monograph by HagelIn this  and subjected to the action of a resonance periodic field, was
paper we will consider the case in which the integrable parbptained by Zaslavsky and Bermi.

H, is reduced to the universal Hamiltonian, and the total Many physical problems can be reduced to the solution of

Hamiltonian is of the form the Mathieu equation. For example, in view of research of
~ A - the phenomenon of parametrical resonance, the analysis of
H=Hy(l) +V(1), (2)  the Mathieu equations leads to the origin of zones of un-

~ S . . stable motion[6]. In the study of motion of the electron in
wher_e V(t_) is the pe_rlt_)dlcgl interaction. In the CO”S'd‘?fEd the periodic potential field, the analysis of the Schrodinger
Hamﬂ_toman (2) all difficulties of .the quantum-me_char)lcal equation, which is reduced to the equation of the Mathieu,
description are connected not with the total Ham|IAton|an a%xplains the presence of forbidden energy zones in semicon-
in the case of mode(l), but with its integrable part 51 A ductors[7]. It is possible to cite other similar examples, how-
detailed analysis of eigenstates of the universal Hamiltoniagver, the Mathieu-Schrodinger equation for the universal
shows that the spectruEﬁf”(l) has a complicated and spe- Hamiltonian differs from them, because in this case the mo-
cific dependence on the paramettesince it contains degen- tion is finite and hence the energy spectrum without fail is
erate and nondegenerate domains separated by numeraliscrete. Depending on the values of the parameters of the
branching points of the energy spectrum. Passages througtioblem, the energy spectrum can become degenerate. In the
the branching points due to the periodic interactionv present work the condition of degeneration of the energy
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spectrum and, the reason for their emerging will be investi- dw

gated. &1= ar
The main purpose of this paper is to describe a quantum

analog of the classical stochastic layer. For this, in the lasand expanding Hamiltonia¢v) in the series with respect to

section we consider a nonstationary problem of eigenstatemall deviations of the actiofil =1 -1, in the approximation

perturbation for the Mathieu-Schrodinger equation. It isof the moderate nonlinearity

shown that when passing through a branching point the sys-

tem may transit from the pure state to the mixed one. The e<e <lle, Alllo<1, (1)

mixed state formed as a result of multiple passages througlye obtain Hamiltonian in the form

branching points is, in our opinion, a quantum analog of the

stochastic layer. H= w—,(AI)2+V cos ¢ (12)
2 1
Il. UNIVERSAL HAMILTONIAN

w

(10

where
Let us present the atom as a nonlinear oscillator under the
action of the variable monochromatic field. Then the Hamil- V= eVl ,_ do 13
tonian of the system atonmt field is of the form =eVlly), o= di | (13)
H(x,p,t) = Hq(x,p) + Hy (X) + V(X 1), )

Hamiltonian(12), called universal, as it is easy to note, is
where similar to the Hamiltonian of the pendulum with “mass”
1/w’ and with “impulse” in the “gravity” field with accel-
eration of gravityg~ V.

The value 1b' is in fact the measure of system inertness:
the higher 14&’, the more difficult it is to take the system out
e of resonance by means of pumping and, vice versa, the lower

V(x,t) =Vx cosQt, V,=-—f, e<1, (5) 1/w’, the easier it is to do so. If in E¢12) Al is substituted

m by the appropriate operatdxl — i d/dp, one can obtain
wheree, m are the charge and mass of the electoam are  the universal Hamiltonian in the quantum form
the coordinate and impulse of the electrey, is the eigen- 2,0
frequency,y and B are the coefficients at the nonlinear terms, H=- W' & +V cos o. (14)
. . . 2 ¢

f, andQ are the amplitude and frequency of a variable field. 2
InteractionV(x,t) of the electron with the variable field we Hamiltonian (14) describes the joint motion of the atom
shall consider as small perturbation. _ + field system. Here' is the only parameter characterizing

Having made passage to the variables of action anglgye atom, while the pumping amplitudé is the parameter
(1,0) W't/h the  help /Of_ transformations X characterizing the fieldi%o’ is a minimal energy value con-
=(21/mwo)*?cos 0, p=~(2Imwo)"?sin 6, assuming that reso- nected with nonlinearity and called quantum energy of non-
nance conditio®= () is fulfilled, and averaging the equation linearity.
with respect to fast phagefrom the Hamiltonian3) we get

p?
m

H0:1/2( +w§mx2), Hyu=B8C+y+ ..., (4)

H(l, 1) = Hg‘L+ eV(1)cos o, (6) Il. SYMMETRIES OF THE MATHIEU-SCHRODINGER
EQUATION
— — 3[ 1 \? Having written the stationary Schrodinger equation,
HY = wol +Hy,  Hy = E(m ) Y (7) g y gereq
[ ~
° Hefn = Enti, (15)
V(1) = Vo(1/2mag) 2. (8)  for the Hamiltonian(14), we get
Here we have introduced the slow phased—Qt, which P,
in time ~2/Q varies insignificantly. The resonance condi- Py +[E, = V(,9)]4, =0, (16)

tion is fulfilled for the particular value of the actidg, the
value of which can be found from the same resonance con-

dition V(l,¢) =1 cos 2p, 17
o~awly)=0 9) where the dimensionless quantities are introduced,
o/ — )
8E 8V
where En— s =5, (18
NL hew hfw
w(l) :( (ﬂo ) -Q. and the replacemeni— 2¢ is done.

The Mathieu-Schrodinger equation was studied by
Introducing the dimensionless parameter of nonlinearZaslavsky and Berman in the quasiclassical approximation
ity [4] [5]. In this work we shall investigate the Mathieu-
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TABLE 1. The relations of a symmetry for the Mathieu
functions.

Gle) G(-¢) G(m=¢) G(m+¢)
Cem(e) Cem(e) Cem(®) Cem(®)
Co&m1(e) Com1(e) —C&mi(¢) —C&mi1(¢)
S&M1(p) —S&m:1(®) S&M1(p) —S&m1(p)
S&mr2(P) —S&m:2(®) —S&m:2(®) S&mr2(p)

Schrodinger equation in an essentially quantum area.
As is known[8], periodic solutions of Eq(16) are given
by the Mathieu functions

ceml @), Comalle), semall @), semall.¢),
(19)
which satisfy the normalization condition
2
1
- f Vil @)de=1, (20)
(o)

where (1, ¢) means Mathieu functiond 9). To eigenfunc-
tions (19) there correspond the eigenvalu®&sathieu charac-
teristicy

bams2(l), (21)

am(D),  ame(l),  bomea(l),

which also depend on the paramelter

The properties of symmetry of the Mathieu function can

be presente@B] in the form of Table I. By immediate check

it is easy to be convinced that four elements of transforma

tion

Gle—-¢)=a, Gl¢— m-¢) =D,

Gle—m+g =c, Gleg—o¢)=e (22

PHYSICAL REVIEW E 70, 026219(2004)

/ G+:eab1
G— G_gc,
N Ggea.

Moreover, as can be easily verified, these subgroups are in-
variant subgroups.

As is known from the theory of groups, the existence of
subgroups indicates the existence of degenerate states of the
system with a higher symmetry than the symmetry defined
by the basic grouis. Since in our case these subgroups are
invariant subgroups of second order, we may expect the oc-
currence of degenerate states of second order. Thus, by virtue
of general arguments based on the symmetry properties of
the Mathieu-Schrodinger equation, we conclude that the sys-
tem has both degenerate and nondegenerate states.

(24)

IV. DEGENERATE STATES OF THE
MATHIEU-SCHRODINGER EQUATION

In the theory of Mathieu functions, the graphs of the ei-
genvaluesa,(l) and b,(lI) as functions ofl are plotted by
numerical methodgll) and(12). As seen from these graphs,
curvesa,(l) andb,(l) merge for small, while curvesa,(l)
and b,,4(1) merge for largd. It is obvious that the merged
segments of the Mathieu characteristics correspond to the
degenerate states whose existence has been mentioned
above. In this section, we will define the wave functions of
degenerate states and obtain equations for finding the merg-
ing (or branching points of the Mathieu characteristics. Be-
low, the presence of branching points will play an essential
in role in explaining the transition from the pure state to the
mixed one during the quantum investigation of the dynamics
near the classical separatrix.

In what follows, we will use the plane with coordinates
I,E. In the classical consideration, the motion of a math-
ematical pendulum in a neighborhood of the separatrix oc-
curs when the initial kinetic energy of the pendulum is close
to the maximal potential one. It is obvious that, on the plane

form a group. For this purpose it is enough to test the realf| E), to this condition there corresponds the straight line

ization of the following relations:

a’=b’=c’=e,

ab=c, ac=b, bc=a. (23

Group G contains three elements,b,c of the second
order and unity elemerg The groupG is isomorphic to the
well-known group of Klein[9,10]. This group is known in

group theory by the applications to quantum mechanics. All

=E. Therefore we can say that, on the plg¢hg), to nonde-
generate states there corresponds a certain domain lying on
both sides of the lingé=E. It is in this very domain of the
change ofl that the system is characterized by symmetry
groupG.

A. Degeneration of states at small: Area on the left of the
separatrix line

In the limit | — 0 the equation of the Mathieu-Schrodinger

the elements of the group commute. This assertion can b@quation(16) takes the form

easily checked taking into account group operati@3s. So,
the symmetry group of the Mathieu functi@is the Abelian

group and has only one-dimensional indecomposable repre-

sentations.

Therefore Mathieu functiong19) corresponding to the
symmetry groupG describe nondegenerate states.

The group of transformation& is not a simple group

since it contains subgroups. When combined with the unit

element, each of three elememtsh,c forms a subgroup of
second order:

d*yn,
de?
The orthonormalized system of solutions of E2f) consists
of even and odd solutions

+Enifn =0. (25

Jg=cosne, i, =sinne. (26)

They both correspond to the same energy vadiyen?,
i.e., forl=0 there occurs a doublefold degeneration of levels.
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Note that functiong26) correspond to the well-known lim- 1

iting (1— 0) forms of Mathieu functiong11]: Ey = 2[(V11+ Vo) +(Vig+ V)2 +4V15%],  (31)
ce,(¢) — cosng, se(¢p) — sinne. (27) - 4O = Culf + Col, (32
This means that at the diminution lofhe coming together
of the energy terms with the identicaltakes place and for vV Vi =V 1/2
=0 they are merged together. It is necessary to find out that C(lo) = #{ t L > 22 2} ,
this confluence happens at the pdin® or atl=1™#0. In [Vaa (V11— V) + 4Vyy

point of the merging of termg”. (20) - 4

this section, below we will be concerned with finding a lower {

Vio 1= Vi1~ Vo, v

At first let us find out what the eigenfunctions of the de- 2|V N V(Vi1 = Vap)? +4Vy '
generated states corresponding to the I&in? look like. (33)
Equation(25) is the Schrodinger equation for free rotation in
the phase plang. The continuous Abelian group of two- where the index in brackets corresponds to the order of the
dimensional rotations @2) [9] corresponds to this motion. perturbation theory. Matrix elements of the perturbaiia)

Since the Abelian group may have only one-dimensionaV(i,k=1,2) are calculated by using of functiorig9) of the
ireducible representations, the two-dimensional representategenerate state of the unperturbed Hamiltonian. Taking into
tion constructed in the base of real-valued functi@®y will account expression@9) we shall calculate the matrix ele-
be reducible. Hence functior{26) cannot be eigenfunctions ments:
of a degenerate state. To surmount this problem we shall
recollect that the eigenfunctions for the degenerate condition T
can be also complex. Vi = |f ¢;(¢)¢n(¢)cos 20de=0, V,»=0, (34

As is known [10], symmetry relative to the time sign
change in the Schrodinger equation accounts for the fact that °
the complex-conjugate wave functions correspond to one and )
the same energy eigenvalue. Therefore two complex- . 0 if n#1
conjugate representationg,(¢) and i,(¢) should be re- Vip= If YA(@)cos 2pde =1 lm _ .. (39
garded as a representation of doubled dimengbgt(]. Usu- A 4 it n=1
ally, for the base of the indecomposable representation of the

group O (2) complex functions are takefi9], After substitution of those matrix elements in the expres-
sions(33) for the eigenvalues and exact eigenfunctions we
(@) =ene, (28)  shall obtain
So, in the degenerate area in view of conditions of nor- w_ |7 + -
malization[see Eq(20)], for eigenfunctions complex conju- S 4’ =1 =COSQ, Y-y =i sing.  (36)

gate functions should be taken )
Thus the exact wave functiorf86) of the undegenerate

N . V2 states only fon=1 coincide with the Mathieu function in the
() = > e Un(e) = ?e'““’. (29)  limit (27) (1—0).
The perturbationV(l,¢) removes degeneration only for
Let us remark that group @) is isomorphic to subgroup the staten=1. Therefore it is only for the state=1 that the
G_ (24). The element of symmetrg=G(¢p— m+¢) of sub-  spectrum branching occurs at the poirtO, which agrees
group G_ provides recurrence of the phase variation aftewith numerical calculations given in the form of diagrams
each period and consequently the symm@&rycharacterizes [12]. It can be assumed that in the case of diminisHirthe
the condition of motion similar to the classical rotary motion. merging of energy terms for states# 1 takes place at the
However, to use only the argument of symmetry is notpoint at which the states are still defined by the Mathieu
sufficient for finding the coordinates of the branching pointfunctions and not by their limiting valug7). Wave func-
I, Below to find these points we use the secular perturbations for degenerate statés-0,n#1 can be composed of
tion theory. the Mathieu functions by using the same arguments as have
So, atl=0 we have doubly degenerate states with theébe€en used above in composing the wave functions fe0
wave functions(29). Let us find out, whether the perturba- [EQ. (28)]. As a result, we obtain
tion =

" V2 ,
Y™ = () = ~ (cawtiseg), n=2m+1,

[

V(I,p)=lcos 2, 1<1 (30)
- : (37
can remove the existing degeneration.
As is known, first order terms of the perturbation theory 5
for the energy eigenvalues and the exact functions of zero M2 f ] o) = 2 ce.o+is
approximation for double degenerate levels look ljk6] e vill, @) 2 (Cenp +iserp),
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n#1l, |#0, n=2m+2. (38)

Let us assume that a;zl(_“) the removal of degeneration

for the nth energy term happens. Then, accordingly, on the

left and right from1™ the Mathieu-Schrodinger equation
(14—(17) is possible to rewrite as

Hl)y=El)y, 1W<l

HU)y=El )y, 1W=],. (39)

SinceH depends o continuously[Eq. (14)] then in im-
mediate proximity to the pointk, it is possible to write

- ~ aH

H(In>I(_”))zH(In<I(_”))+E51n, (40)
n

wheredl, is the infinitesimal area close tp With account of

Eq. (14) it is possible to write

JH

—8l,=-4l,, cos 2.
aly

(41)
Substituting in Eq.40) H(I,<I™)—H and H(I,>1™)

HI:|0, the Hamiltonian near the poihtl, we shall present
in the form

H=H,+V(dl,0), (42)
where
“ P
Hoza—goz—l cos 2p, (43)
V(8l,¢)=-dl cos 2, 81> 0. (44)

Here for brevity we replacedl,, by 4.
Let us write the perturbation matrix elemeig)) for odd
degenerate statg37)

ks

1 \
V2 = ;f PEIV(A, @) (2™ dg

[o]

1) .
;f (Cénﬁl - Segrml +12C€m:1S&me1)
0

X cos2pde, (45)

w1 1 .
Vet =2 [z ey de
o

Sl
g f (C&y1 + SGrpe1)COS 2pdep. (46)

Here for brevity we write Mathieu functions without ar-
gumentsp andl. Moreover, as the Mathieu functions for the

PHYSICAL REVIEW E 70, 026219(2004)

FIG. 1. Plots of the Mathieu functiorey(I+ 41, ¢), ces(l, @), at
values of parameters near the point of branchir@,, 81 =1, plotted
by the use of numerical methods. It is obvious that the small varia-
tion of the parametel leads to the small variation of the Mathieu
functions.

small 8l as a result of continually depending from the param-
eter| changes slightlysee Fig. 1, at the calculation of ma-
trix elements we neglect this dependence.

To calculate the matrix elementd6) and (47) we use
formulas of expansion of Mathieu functions into Fourier se-
ries[8],

Com1 = X Agricog2r + 1)g, (47)

r=0

o

S&m1 = >, BaMlsin(2r + 1) .
r=0

(48)

The factors of expansiofa™r;* andB3™:! are defined with

the help of well-known recursion relatiofi8,11,13. Substi-
tuting Eqs.(47) in Egs. (45 and(46), after simple integra-
tion, having omitted superscripts for simplicity, one can ob-
tain

[

V=V, = %% {Agr+1(Azrsa + Agr-1) = Barra(Barss
+Byr-1)}, (49)

Vip=Vo_= %% {Aorr1(Aorea + Agr-1) + Borra(Boras
+Bay-1)}- (50)

These expressions can be simplified with the help of the
recursion relation$8] for Ay .1,

| Em+l(A2m+l

2[agms1 — (2r + 1)Z)A5T - S+ A =0,

(51)
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[ Em+l( BZm+1

2y — (2r + 1)2IBT - o+ Bo) =0,

(52)

where aym, 1 =asm1(l) and by =bone1() are energy terms
(Mathieu characteristicgl1]) in the nondegenerate area for
the statexe,1 and se,.1 accordingly. In the degenerate
area the termsy4 andb,,.1 converge. Determining from
Eqgs.(51) and(52), Ay _1+Ay 3 andBy, 1+ By, 43, and substi-
tuting in Egs.(49) and(50), we obtain

[ + ~ ~
V2T =\ 2 |2f11+1 Qom1 . Poms1 _ %(A2m+1 + B2y |
(53
VET+1 — Vir_n+1 — |2f11+1 Qom1 ; l02m+1 _ %(“A2m+1 _ “B‘2m+1) ,
(54)
where

APML= S (2r + DIASTR BP™= 2 (2r + D)ABYT.
r=0 r=0

(59)

For the deriving of the formula&3) and(54) we used the
relations[8,11]]

> [Agal?=1 and) [By. 2 =1 (56)
r=0 r=0

PHYSICAL REVIEW E 70, 026219(2004

TABLE Il. The results of numerical calculations for the coordi-
nates of left branching points.

Left points of branching

1272 (48) 121 (45)
0 0.30 0
1 2.0 1.2
2 8.0 4.5
3 28.0 13.0

pair of wave functiong19) from the states of the undegen-
erate area. So in point§™?! the wave functions of the de-
generate states turn into the wave functions of the undegen-
erate states.

Similarly it is possible to calculate the matrix elements for
even statey/?T and V2™, taking into account expansion for-
mulas of functionsce,(l,¢) and se(l,¢) in the Fourier
series[8,11] and also by use of the similar to Eq$1) and
(52) relations of recursion. Omitting mathematical details of
these calculations, we present final results for approximation
of first order with respect to energy eigenvalues and for exact
wave functions of zero approximation:

Al ~
E.= @[aZm(lgm) - A2m(|gm)]'

and for brevity we wrote the superscript without brackets

(12 2mey
Substituting the matrix elemen{s3) and (54) in the ex-

pressions of perturbation theory in the approximation of first
order with respect to energy eigenvalues and for exact func-

tions of zero approximatiof31)—33) we get

E.= |2m+1[aZm+1(|Em+1) - Z2m+1(|gm+l)],

E = sz—+1[b2m+1(lﬁm+1> SEmEmy) (s7)
P12, @) = copmer (1™, ),
PP @) = isepma (1P™ ). (58)

After equating the corrections of energy=E_ [Eq.(57)]
and taking into accourgym, 1(12™1) =bym.(12™1), we obtain
the equations defining branching points,

Z2m+l(|gm+l) — EZn’H'l(IEm+1) ) (59)

According to Eq.(55), both sides of Eq(59) depend on

Sl -
E = Iz—m[bzmaf"‘) - B2M(12M)], (60)
wf—m(lgmv (P) = CeZm(IEma QD) L]
P17, @) = isey(12™, @). (61)

The points of a branchind™ of energy terms are obtained
(by using numerical methods, see Tablgwiith the help of
an equation which can be obtained by means of equating
corrections of energy term®0), E,=E_:

AZm(|2m) = g2m(|2m) (62

Exact wave functions of the zero ord@l), accurate to a
nonstationary phase factor coincide with the appropriate pair
of functions from Eg.(19), describing the nondegenerate
states. In other words, in the poiif" the removal of degen-
eration happens.

On the basis of obtained results it is possible to present a
qualitative picture of the variation of energy terms on the
plane(E,l) in the left-hand area from the line of the separa-
trix (Fig. 2).

At the end of this section we shall remark that the degen-
erate state, located at the left of the separatrixes line, can be
considered as an analog of classical rotary motion.

the coefficients of Fourier expansions of the Mathieu func-

tions(47) and(48), which in their turn depend ohn Equation
(59) can be solved only by numerical methodsble II).
The exact functions of the zero ord@&®) accurate to the

B. Degenerate states at majot: Area on the right
of the separatrix line

With the increasing of the particle can be trapped in a

insignificant phase multiplier coincide with the appropriatedeep potential wellV=I cos 2p,0< ¢ <, Fig. 3), perform-
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WP
Ce,(1+8.,9)
ce, il @) 7f Y

-2 - - 2 [0

1
-0.8

FIG. 2. The energy levels as a function of paraméten the
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come to the conclusion that with increasintyvo levels with
wave functionsce,(¢) andsem.1(¢) coming nearer amal-
gamate in one level, and other two levets,(¢) and
sem:1(¢), also in one level. The levels obtained in this way
will be doubly degenerated. It can be assumed that with the
growth of | the states defined by the symmetry gro@p
transform to the states with the symmetry of an invariant
subgroupG; [EqQ. (24)]. This transformation takes place at
the merging point of nondegenerate ter’m:tﬂr”). Recall that
subgroupG, contains two elements: the unit elemenand

plane(E,l) on the left area from the separatrix line. The points of the reﬂectii)n element with respect to the symmetry center of
the branching of curves represent the boundaries between degenthe Well b=G(¢— m-¢). Complex wave functions of the

ate and nondegenerate states.

ing oscillatory motion. Properties of wave functions of the
quantum oscillator near the bottom of the well are well
known. This is the alternation of even and odd wave func-

tions relative to the center of the potential well2 and the

presence of zeros of wave functions. With the help of the
third column of Table I it is possible to write symmetry con-

ditions close tom/2:

C%(%T + @) =(- l)”‘C%(% - @)-

sen(Z + qo) =(- 1)”‘*1sen(z - @) : (63)

2 2

ie., cen(e), semi(e) are even functions and
Sem(®), Ce&mi(e) are odd functions.  Functions

Com(@), S&m1(¢), Co&Mile), and sem.o(¢) have m real
zeros betweerp=0 and ¢=7/2 (not considering zeros on
edges.

The existing alternation of stat€sig. 2) in the area along

the line of the separatrix is conditioned by the properties of

states at the smalll With the help of the expressiori€3) it

area of degenerate states, with the symmetry of the invariant
subgroupG,, can be composed of pairs of functions of
merged states in the same manner as we have done above for
the area of small for states with the symmetry @._.

Not iterating these reasons, we shall write complex wave
functions corresponding to the degenerated states in the form

Em(®) = Coul(@) T iseymi(@), even states, (64)

érml(‘P) = Ceme1(@) £ isemio(¢@), 0dd states. (65)

In the base of complex wave functiogh, and &5,.,,, the
indecomposable representation of the subgr@pis real-
ized. Parity of the wave functions,,, and {3,,,,; With respect
to the transformations of the subgro@® characterizes an
important property of wave functions evenness of the quan-
tum oscillatory process.

Let us set about with the calculation of the matrix ele-
ments of interaction44) for the states given by the wave
functions(64):

2w

S . .
WD = g J Em €OS (o) do (66)

is possible to determine easily that in the spectrum of thénd

states along the lin&€=I two (instead of ongeven states

alternate with two odd states, and so on. To get the alterna-

tion, caused now by properties at majortwo even states

must degenerate in one even, and two odd in one odd. So we

AE
’l ce4 E=
G_ '
'\ ce
’II 3 se4
[
LI
n 1 €€ se;,
I|I |
il | Sez
Il
I ce
, i 1
11 S€ >/
J (O S

FIG. 3. The dependence of interaction enevgyn phasep. The
interaction has the following properties of symmetry:Vip)
=V(=¢); 2.V(@)=V(m+¢); 3.V(¢)=V(7-¢).

27

W2 = % f &m COS 20(55) de, 81 <0.  (67)

Let us use expansion formulas in the Fourier seji@$or
the Mathieu functions with even index

o]

r=0

S = i BaM sin 2r ¢ (68)
r=0
and by recurrence relations
(E=4r2)Ag = Al(Ag_p+ Agrip) =0, E=ayy(l),
r=2,3,...,
[E~(2r +2)%]By = 81(By + Byres) =0, E=bymus(l),
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TABLE Ill. The results of numerical calculations for the coor-
dinates of right branching points.

Right points of branching

n |2n |2n+l
+ +
1 15.0 17.5
2 25.0 32
3 41 51
r=1.2, ... (69)

After simple calculations similar to those in the previous
section, we shall get

WAT = WA = %(aZm + bo) — %(Aﬁ +RMLB), (70
" m_ L 1 2.7 B
WED=WED= 2 (@n ~ ban) = S(AG+ AT+ BT, (7D
where
A= (20AASTE B =X 0B (72)

r=1 r=0

For deriving of the formulag70) and(71) we have used
the relationg8,11]

2AA P+ 2 [AyP=1andX [By. P =1. (79
r=1 r=0

Substituting the matrix elemen¢g0) and(71) in the for-
mulas of the secular perturbation theory for the first orde
terms of the energy eigenvalues and for exact functions
the zero approximatiofB83) we shall obtain

B ~

E2"= Iﬁ[am(li”ﬁ - A2 - AP,
Sl ~

BT = o Damea (157 = B, (74)
2

U0 = cepn(@), ¥ =i Seumir(9). (75)

After equating the corrections of energi@4) E.=E_ and
taking into account the fact that at the point of merging of
terms ay (1™ =bome 1 (12™), we obtain the equation for find-
ing 1™

A2+ AP =B, (76)
Equation(76), like Eq.(62), can be solved only by numerical
methods(see Table II).

of'd
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AE
ce, =l
ce, se,
¢, se,
ce -
1 se, -
s€ N -~ E G
- : : : + =l
1 2 3
L I, L

FIG. 4. The energy levels as a function of the paramleterthe
plane(E,l) on the area to the right of the separatrix line. The points
of the branching of curves represents points of degeneration of
terms in this area.

Figures 2 and 4 supplement each other: in the field of
intersection with the separatrix the curves of the Figs. 2 and
4 are smoothly joined.

So, we shall add up outcomes obtained in this section.
The Mathieu-Schrodinger equation has an appointed symme-
try. The transformations of the symmetry of the Mathieu
functions form groupG, which is isomorphic to the quater-
nary group of Klein. To this symmetry on a plaf&,l) cor-
responds the appointed area along the line of the separatrix
E=I, containing nondegenerated energy terms. This area is
restricted double sided by the areas of degenerate states,
which are characterized by the symmetry properties of the
invariant subgroup&_ andG,, respectively. The boundaries
of these areas are defined by the branching points of energy
terms existing both on the right and on the left of the sepa-

Iratrix. Equations for determining the branching points of en-

y terms are obtained. The equations are solved only nu-
merically.

The area of degenerate states is the quantum-mechanical
analogs of two forms of motion of the classical mathematical
pendulum—rotary and oscillatory. Comparing results of
quantum reviews with classical, we remark that these two
conditions of motion at quantum reviewing are divided by
the area of a finite measure, whereas at the classical review-
ing measure the separatrix is equal to zero.

V. INTEGRALS OF MOTION: AVERAGE VALUES OF
SOME OBSERVABLE QUANTITIES

Let us find out the complete set of physical quantities for
our system. For this purpose it is necessary to write all trans-
formations which commute with the Hamiltonigt4). As
we already have establish¢skee Table), these transforma-
tions form a quaternary group of Klein. In this paragraph we
compare to each element of this group the appropriate
quantum-mechanical operators producing these transforma-
tions. So, the element of growpis the operator of inversion

The similar calculations can be easily done for the od(fo[ioz,{;(go)zw(—gp)], which commutes with the Hamiltonig

states¢] [Eq. (65)]. As follows from these calculations, at
particular valued the degeneration is removed. The results,
obtained in this section, are plotted in Fig. 4.

[Eq. (14)],

Hi, - 1,H=0. (77)
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TABLE IV. Table of energy terms and quantum numbers for thetem at the inversion, are unessential. In this area translation

eigenfunctions of nondegenerate stefes0). symmetry leading to the infinite motion, i.e., periodic recur-
rence, plays an essential role.
Eo lo l2 Ts From relationg79) and(80) it follows that at the passage
from areaG into areaG._ the destruction of two integrals of
cemil ) 2onfl) ' ' ' motion [, and 1, Eq.(79)] happens, but the other two
CeZm+1(|xGD) aZm+l(|) 1 -1 -1 [OCﬁ- 2 q(t )] qup (8(;)]
s I, by (1 1 1 1 energy andl ,—are maintainedEq. .
SZ”ME' gp; b2m+lE|; 1 1 X In degenerate are®, (Fig. 1), in which the states are
m2 P 2m2 characterized by wave functior§ and £ [Egs. (64) and
(65)], the operators of the symmetry produce transformations
The eigenfunction of the Hamiltonia{¢) also is the
. . . 2 §2m 2m1 0§2m+1 §2m+l1
eigenfunction for the operator of the inversity
X Tobon=Em  Talom1 =~ Gomer, 81
WERNE) 79) b Telamn =Gy (60
Acting once again on Eq78) by means of operatof, Lpes =& ol == 1 (82)

.7 12 _ .
one can obtaigy(¢) =15(¢) = yi¢). It follows that eigen- From relationg81) and(82) also follows that at the pas-

values of the operator of inversion atg=+1. Thus the gage from ares into areaG, the destruction of two inte-
eigenfunctions have fixed parity, which remains invariable in rals of motion[i andT. E (81)] happens, but the other
time. The elemen of the Klein symmetry group, also com- 9 m =0 P

muting with the Hamiltonian, is the operator of inversion tWo—energy and .., [Eq. (82)]—are maintained.
relative to the center of the potential wefig. 3)_| o ltis It is clear from relationg81), that the wave function§;

possible to show similarly that the relevant eigenvalues ofire not eigenfunctions for the operatogsandT,.. The func-
the operator aré +1. The element of the Klein sym- tions & are the eigenfunctions for the operator of inversion
2=

metry group, commuting with the Hamiltonian, is the opera-With respect to the symmetry axis of the potential WETl-7

tor of translat|onT with respect to the phase on the dlstance(':Ig 3. This resuit can be understood by assuming that the
) A degenerate are@,(E<I,<I) corresponds to the oscillatory
7. The eigenvalues of the operator of translatiopare T,

—i1 motion performed by the particle captured in the potential

In the area of nondegenerate states designated in Figs. v&ell Because the action of operatdgsandT transfers the
and 4 by means o6, all four operators form the compete particle to the other “potential wellgi.e., hinder the capture

h h in one of the potential Wel}sdetermining by them properties
set: the energyl inversioni, inversion concerning the cen- ot the system in case of oscillatory motion will be inessen-

ter of the WeIII,T,Z, and translation with respect to the phasetial. The main role in are&, takes the symmetry relatively

| have the same eigenfunctions. For example to the eigene the center of the potential hole,, describing parity of

state cey,q(l) corresponds the energy terbn.i(¢), I, the oscillatory states.

=1, l,,=-1, T,=-1. In Table IV we reduce quantum num-  Let us proceed to the computation of some physical quan-

bers for eigenfunctions for the undegenerate states. tities characterizing the system. Our interest will be fixed on
In the degenerated area designatedzhyin Fig. 1, where  the computation of the mean of the action variatibinand

the states are characterized by wave functighsand J5,,.;  its square(Al)%

[Eq. (36)], operators of symmetry produce transformations 5 52 2
Soa s - <A|>=—i§<¢//&— ¢//>, <(A|)2>=-Z<¢ﬁ ¢>,
lotom= o lo¥ome1 = Yo ¢ ¢
(83
Vo= Yame LntaWome1 = = Yamer (79  where
2
~ ~ ~ 1 *
Tothom= Vom  Tallomis = = Yomnr- (80) (YA ) = ;f QAP (¢)de.
(0]

According to the relationg79), the wave functionsf,,
and 5, are not eigenfunctions for the inversion operators  The mean calculated with the help of different wave func-

I, andl ,, but are eigenfunctions for the E@O0) operator of ~ tions of the system, for different areas of the pldigl),
translatlonT naturally will be different. Let us begin with the case of the

This result is easy to understand because degenerate af&g€ rotation(l =0). With the help of the wave function@9)
G. corresponds to the rotary motion. Since the rotary motiorve shall obtain
is valid for the sufficient high energids>|_>1, properties
of the symmetry(Fig. 3), defining the properties of the sys- o

‘ i 2> (84)
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Two signs in Eq.(84) correspond to rotation in two op- TABLE V. Some average values of the action deviation and its
posite directions. The wave functiogg , are the eigenfunc- square for the states corresponding to the different areas of the
tions all at the same time for the Hamiltoni&®5) and for ~ plane(E, ).
the operatow/ d¢. Therefore for these states the eigenvalues
and the average values coincide. For the computation of the I<Ey I<l.<E I-<I<L Eo<li<lI
mean the operatos?/de? suffices to raise to the square 1=0 G- G G.
power expressiong4).

. . . 0 0
For areaG._ the wave functions can be written down in the (XTn _h e
form (37) and(38). In this aread/ dp does not commute with Tonow AT B
the Hamiltonian(14) and the appropriate values are not pre-
cisely measurable. For the average vaiiée with the use
of wave functiong37) and expansion formulas in the Fourier {(AT)?), o 2 o o
series(47) and (48) we shall get hp  WRMBT B p? AT B
2 4 2 4 4 2
+ d + S A2N+ip2n+l
<¢§n+1 PR ¢§n+1> =zt |A2n+1an+ly (85)
Je

where d

) | 7| 6] =0 (90)

AZ+IR20+T 2 (2r + 1)Ay+1Bor41.

e and
2
Two signs before the sum correspond to the different direc- L@ 1 . 5
tions of rotation. For the calculation of the average value \ &m Ey &m) =~ Emt g f [&m(@)]” cos 2pde
#1d¢* we shall take advantage of the energy integral with ¢ o

the help of which it is possible to produce the replacement Leng = ~
1 9p?——(E,—1 cos 2p). In view of it we shall get == 3[As+ Aom* Bomeal. (91

2 With the help of expression83) and the results obtained
Vot | = | Yomer ) =~ Eo+ Vs (86)  in this sectionEgs.(84—91)], we can compose the table of
X o mean value variations for the action’s deviation mean and its

square with the increase bfTable V).
ations for theV,., [Eq. (50)], we shall obtain As follows from Table V, the relatiorszI>ﬁ=<(AI)2}n i_s
fulfilled only for the values of the columh<E,. This is
. # |, 1 ~ - understandable if we recall that it is only in this case that the
Yo | 5 2| Yo :_§[A2m+l+ B°™!].  (87)  system is in the eigenstate of the operatdr~a/de and
¢ therefore its eigenvalues are defined precisely. In all other
As was expected, the square of the m¢@h) does not cases the system is not in the eigenstate of the opefdtor

Substituting in Eq(86) the results of the previous evalu-

coincide with the mean of squa(87). and therefore for the column&. ,G, and G, we have
Let us calculate the average values of quantities for théAI)ﬁ#((Al)'Z)n.

states of undegenerate af®aWith the help of wave func- Using Table V, we can observe hofl),, diminishes to

tions (19) we obtain zero with the growth of. This is understandable if we recall

. that the valugAl), is proportional to the rotational compo-
P 1 P nent of motion. Indeed, in the first colunih=0) of Table IV
a—‘ n :—f l/ln(<p)(9—¢//;((p)dg0:0. (88) the value of(Al), corresponds to the free motion mode,
¢ T ¢
[0}

tn
< while in the second colum( <1_) the value ofAl), corre-
sponds to the rotation weakened by the influence of a peri-

Having taken advantagFe szthe energy inteddd) for e hotential. The third and fourth columiis <I<I, and
computation of the mean of/de” for the system in the state | ) correspond to the quantum analogs of the separatrix
Yan+1=SEnsa(¢), we shall get and oscillatory motion, respectively, where the rotational

component is totally absel),.

<592n+1

- _pant (89) In the case of Hamiltonian systems performing a finite
' motion, a stochastic layer formed in a neighborhood of the

And at last, with the help of the stat&$ of the degener-  separatrix under the action of an arbitrary periodic perturba-

ate aredas, for the mean we shall obtain tion is a minimal phase space cell that contains the gem of

2w

|
SeZn+1> =-Eq+ ;f Séml cos 2pde
o

é’goz

VI. QUANTUM ANALOG OF THE STOCHASTIC LAYER
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stochasticity{4]. In this section we shall try to find out what the wave function of one area into the eigenfunctions of an-
can be considered as the quantum analog of the stochastither area. Let us assume that, initially, the system was in
layer. one of the eigenstates from the nondegenerate @refr

Let us assume that the pumping amplitude is modulateégxample in the statee,,. After a quarter of the modulation
by the slow variable electromagnetic field. The influence ofperiod T/4 (where T=2#/v), having passed through the
modulation is possible to take into account by means of sucpoint!”, the system finds itself in the degenerated &ealn
replacement in the Mathieu-Schrodinger equativ®), this case the system will pass to degenerate statesvith

babilities,
| 1+Al cosut, Al <I. (9g ~ Provabiiies

Here Al stands for the amplitude of modulation in dimen- n 2

sionless unit§see Eq(18)], v is the frequency of modula- P(cemn — ) = lf cen(@) s (@)de
tion. We suppose that the slow variation lo€an embrace ™

some quantity of the branching points on the left and on the °

right of the separatrix lingéFigs. 1 and 2, L 2m 2 1
Al=[1T-1", n=1,2, ... N. (93 o f cem(@)cen(e) £ isex(e)] do| = 2.
As a result of replacemer®?2) in the Hamiltonian(14), °
we get (99)
A=A+ I:|’(t) (94) For deriving Eq(99) we used the condition of normalization
° ' (20) and orthogonality8]
ﬁ’(t) = Al cos 2p cost, (95) 2m
whereH, is the universal Hamiltonianl4) andH'(t) is the f cel¢)sq+1(p)de=0, 1,k=0,1,2,.... (100
perturbation appearing as a consequence of the pumping o

modulation. : . .
It is easy to see that the matrix elements of perturbation The pagsag@g) 'S bas.ed on the assumption of having a
~ deep physical sense. As is generally known, in quantum me-
(95) H'(t) for nondegenerate states are equal to zero. Reallypanics symmetry with respect to both directions of time is

having applied expansion formulas of the Mathieu functionsexpressed in the invariance of the wave equation with respect
in the Fourier serieg47) and(48) it is possible to show to the variation of the sign of timé and simultaneous re-
2m placementy by way of . However, it is necessary to re-
- member that this symmetry concerns only the equations, but
(ce[H'(1)[se) ~ J cen(¢p)cos 2se(¢)de=0 (96)  not the concept of a measurement playing a fundamental role
) in the quantum mechani¢40,13. “Measurement” is under-
stood as the process of interaction of the quantum system
with the classical object usually called “instrument.” Under
the measuring arrangement, consisting of the analyzer and

o+ Transitions k_)etweer) levels cannot b_e cond_|t|oned bydetector, one must not imagine the laboratory’s instrument.
the time-dependent interactig®5). It is expedient to include So, the role of the analyzer plays in our case the modulating

Eq. (95 in the unperturbed part of the Hamiltonian. The field, which is capable to “drag” the system through the

Hamiltonian, obtained in such a way, is slowly depending oy, ., ohing points. When passing through the branching point
the parametef. So, instead of Eqs(94) and (95) for the g, onegair)ea to another?the stgate rerr?ains unchangeg.pHow-
nondegenerated aréawe get the Hamiltonian in the form ever, being an eigenstate in one area, it will not be an eigen-
. P state in another. At the passage through branching points

H=- 22T I(t)cos2p, (97)  there occurs a spectral expansion of the initial wave function

¢ belonging to the region of one symmetry over the eigenfunc-

tions belonging to the region of another symmetry. The pres-
I(t) =1+ Al cosst. (98) ence only of the analyzer reserves a pure state and the pro-

There arises the situation in which the system slowlyCess remains reversible. Howevgr_, furthgr we shall assume

“creeps” along the Mathieu characteristics and, in doing sothe presence of the detector, defining which of the statgs,

encloses the branching points on the IBfor on the right”.  OF ¥y is involved in passage. The transition of the system to
various states defined by probabiliti€$00) is fixed by

means of the action of the detector. The presence of the
detector is expressed formally in averaging with respect to
phase and neglecting the interference term usually appearing
According to the general rules of quantum mechanicsin the expression for a distribution function. As a result of
probabilities that the system will pass to the eigenstate o&veraging the partial loss of information about the condition
another area are defined by the coefficients of expansion aff the system takes place and a mixed state is generated.

for even as well as for odd. The expressions of the selec-

tion rules(96) will be fulfilled for valuesl! from the ared”
<|<I}

A. Irreversible “creeping” of energy term populations due to
the influence of a measuring arrangement
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As it follows from Eg.(99), after the quarter period de- going through theromﬂ In passages from the ar& four
generated rotary states, and;, will be occupied with the ~ states  &,=(1/\2)(cen*isen.y) and  Z&_,=(1/V2)
identical probability. After the half penoéT the system X(cey_1tisey,) take part. So, taking into consideration the
again appears in the arga going through the branching above-mentioned probabilities of transitions we get
pointI” in the reverse direction. In so doing probabilities for

the transitions into the stais,, as well as inse,, will be 1 o
distinct from zero, Ploan— &)= 5 f [cen(¢) +Sen(¢)]
v
27 2
N 1)1 . 2
P(Yzn— C&n) = 5 | — | [Cen() £ isem(¢) Jcem()dg .
0 X[CGZn((P) + iseZn+1(‘P)]d(P = Za (106
1
=3 1
2
2m 2

1
101 P(pon— Lo) = i J [cen(ep) +sen(e)]
P, — S&n) = e f [Cen(e) £isen(p)]sen(e)de
2

. 1
=2 (102 X[cen-1(¢) T isen(¢)lde| =7. (107
Here we have used again normalizat{@0) and orthogo- For deriving the last expressions in addition to the nor-

nality (100) relations. It is possible to write the transition malization conditions we have used the orthogonality condi-
probability from ce,, in one of the degenerated stat¢§, tions [8]

and back in thee,,,

21 21
P_ n < C&yp) = P n— in — L&
(6 < e (ce ipz fez : f ce(p)cen(p)de = f S€w1(¢)Sena(@)de=0, m#n.
= P(CeZn - ‘//Zn) P(‘//Zn - CeZn) 5 5
+ P(C&n — #n) P(if — CE).. (108

(103 On the basis of Eq106) and(107) we conclude that after
Here the first summand corresponds to the passag®e time3; T the system will be in the are@, in one of four
through the degenerated stat, and the second one to the oscnlatory states,,_; and &5,,; with the identical probabil-
passage througlt,,. It is easy to see with the help of previ- ity equal to 1/4.
ous computationg99), (101), and(102) that contributions of After one cycleT the system gets back in the at®afrom
these passages are identical and individually equal to 1/4which it started the transition from the leved,,. Upon re-

Therefore finally we have turning, four levels,cey,, S&,, C&n-1, and sey,.1, will be
1 involved. Calculating probabilities of passages from the os-
P_(cey, < ceyp) = 5_ (104) cillatory states of the are@, to these four levels we obtain

Similarly it may be shown that transition probability from P(&n — cexn) = P(&n — sened) =1/2, (109

the statece,, in one of the degenerated staygs and back in N
the aredG, in statese,, by means of going through the point P(&n-1 — S&n) = P({on1 — S&n-1) =1/2. (110
ne
IZis The probability of passages from the nondegenerated area
P_(C&n > SB&) = P(Cey — 1) P(3, — S&n) + P(CEyp G, to the area in one of the oscillatory statgs, ¢,-, and

back in the are& will be

11 11 1
= )P —S&) =55+ 5o = .
anoTen TRV T 22 227 2 P+ (p2n = S&0) = Plpan — £30)P(éan — S8ine1) + Plpay
(105 £ VP(E — $8r) = 11,111
— — +1) =
Thus the system being at the initial moment in the eigen- 20 P on = S&ned) =45 T 557
statece,, at the end of the half period of modulation appears (111

in the mixed state,,, in which the statese,, andse,, are o . )

intermixed with identical weight, and corresponding levels ~Similarly it is possible to show

are populated with identical probabilities. 3 : :
After the expiration of a quarter of the cycle the system P+(P2n <> €&n) = Pi(pan — S&n) = P(pan — Cép-1) = 1/4.

will pass from the are& (the statep,, ) into the areaG,, (112
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Quantum chaos is also observed in the case of a harmonic
oscillator subjected to the action of a monochromatic wave.
It was shown in Ref[15] that in the case of quantum chaos
the distribution of populations by energy levels is localized
and has a narrow Gaussian fofd6]. In our case, we can
also say that chaos is localized at a small number of levels
which is defined by the perturbation amplitude.

An experimental demonstration of the above-described
situation of population creeping is rather difficult because of
the multiple action of detectors at moments when the system

FIG. 5. The fragment of the energy terms, participating in pas-a@ppens to be in degenerate states. As is known, each action
sages calculated in the texg) The initial state. The particle is in Of @ detector on the system entailt least partigl suppres-
the state ote,,. (b) The final state. Levels which are affected by a sion of the natural course of the system development. It is
change of the field amplitude get populated. obvious that the creation of a detector able to discriminate
between degenerate states is also connected with a difficulty.

Thus after the lapse of time four levels of the nonde- 1hat is why below we will try to show that it is possible to
generate are will be occupied with the identical probabili- ©OPtain & picture of population creeping without using a de-
ties 1/4(Fig. 5). tector.

The motion of the system upwards on energy terms will
cease upon reaching the level for which the points of the B. Irreversible phenomena produced by a big phase
branching in Fig. 4 are on the distance at which the condition “incursion” of the probability amplitude
(93) no longer is valid. The motion of the system downwards
will be stopped upon reaching the zero level. If the system az
the initial moment is in the statenZN/2, then afterN/2

a) b)

Different from the area of nondegenerate st&dsee Eq.
96)], in the area of degenerate sta@sandG,, the nondi-

cycles of modulation alN levels will be occupied. agonal matrix elements of perturbatiéti(t) [Eq. (97)] are
It is easy to calculate a level population for the extremelynot zero:
upper and extremely lower levels. Really, the level popula- o

tion for extreme levels is possible to define with the help of , ) « .
a Markov chain containing only one possible trajectory in the — Hi-=H. = (g |H'(O]¢) ~ f Yip_ cos Zpde # 0,
spectrum of Mathieu characteristics: o

(114)

T T T
P(CQ\I/Z’IO;SQWZH'IO"’ 5 St NE) = P<56N't0+ NS where the wave functiong, have been defined previously
by Egs.(37) and(38). Here, for the brevity of the notation,
— caypty+ (N- 1)I> P(cwzﬂ,tw T — sauaspts we gmit the upper indAices indiF:ating the quantum s.tat.e. An
2 explicit dependence dfl’(t) on time given by the multiplier
T T cost is assumed to be slower as compared with the period
+ E)P(sq\uzﬂ,tﬁ 5 cq\,,z,to), (113 of passages from one degenerate state to another produced
by the nondiagonal matrix elemenits,_. Therefore below,

wheret, is an initial time. Here, when discussing the transi-PerturbationsH’(t) will be treated as time-independent per-

tion probabilities from one state to another, we also use &.rbations able to produce the above-mentioned passages.

time argument. Therefore in the area of degenerate states the system can
It is possible to write a similar chain of level population Pe found in the time-dependent superposition sta@e13:

for the extremely lower level. As the probabilities of pas- t) = C.(t) e + C_(t 11

sages, included in the right side of E(L13 by way of WY =C. O + C- 9. (119

factors, are equal to 1/2, then probabilities of an extreme Probability amplitude<.(t) are found by means of the

level population will be(1/2)V?2, following fundamental quantum-mechanical equation ex-
As to the Markovian chain for nonextreme levels, it has apressing the causality principle:

cumbersome form and we do not give it here.

_ Let us note that here irreversibility is_ conditioned by 'Fhe - iﬁac+ =(E,+H.,)C,+H. C._,
interaction on the system of detector in moments of time at 116
overcoming branching pointsg+nT/2;(n=1,2,3..). Aspe- _9C. ) , (118
cific property of the quantum systefuantum mathematical - lﬁ? =H. C,+(E,+H.)C..

pendulum is the ability of redistribution of the energy level

populations. The numbeét is the number of populated levels By analogy with Eq.(45) and (46) in the case of our
and it increases with the growth of the perturbation ampli-problem it should be assumed théf,=H’_andH,_=H",.
tude Al. The possibility of such a consideration at first wasLet us investigate changes occurring in the state during the
shown in Ref[14]. time AT while the system is in the arda_ (i.e., during the
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time of movement to the left froni' and, reversal, to the Hence, after averaging expressi@®0), equating the inter-
right tol"). It will be assumed thaAT is part of the period of ference term to zero and taking into account that

modulationT. Sir[(H'/A)t]=cos[(H' /A)t]=1/2 we get
For arbitrary initial values the system of equatiqig6) g T3 1 ) 5
has a solution [0 =[O = 5[] * + [9-]), (121)
C.,(0) +C_(0) —i where the stroke above denotes the averaging with respect to
C.()=— 2 ——ex ;(E—H’)t time. The obtained formul@l2l) is the distribution of a

mixed state, which contains probabilities of degenerate states
C.(0) - C_(0) i , |, |2 with the same weights 1/2. The assumption that a large
+fex %(E‘H )|, phase is a random value that, after averaging, makes the
interference term equal to zero is frequently used in analo-

, gous situation$13].
C.(t)= C.(0)+C_(0) exp{_—l(E— H’)t} Thus we conclude that if the system remains in the areas
2 h G, of degenerate states for a long tim€l>27#A/H', AT
C.(0) = C_(0) i ~2mh/SH’, during which the system manages to perform a
- +—_exp[—(E - H’)t} . (117 great number of passages, then in the case of a passage to the
2 h nondegenerate aréathe choice of continuation of the path
becomes ambiguous. In other words, having reached the
branch point, the system may with the same probability con-
tinue the path along two possible branches of the Mathieu
characteristics. The errdH’ is evidently connected with the
error of the modulation amplitude value. It obviously follows
that, when passing the branch point, the mixed sthgd)
Swill transform with a 1/2 probability to the states(¢) and
sd¢), as shown in formulagl0l) and (102. Analogously,
C.(0)=1, C,(0)=0 (118  We can prove the validity of all subsequent formulas for the
passage probabilitigd03—(112).

whereE—E,+H,,, E—-E,+H._, H,_—H’.

After complementingH’ in Eq. (117) with the factor
cosut, we can take into consideration also a slow time-
dependent change of perturbatigt’ — H’cos 1t).

Let the movement begin from the state of a nondegen-
erate area in the close vicinity of a branching point. Then w

should take

as initial conditions.
Substituting Eq(118) into Eq. (117), for the amplitudes VIl. CONCLUSIONS

C.(t) we obtain . . L .
The quantum-mechanical investigation of the universal

, H’ Hamiltonian(mathematical pendulumwhich is reduced to
C.(t) :e('/h)EtCOS(zt) the investigation of the Mathieu-Schrodinger equation,
showed that on the plan€éE,l) there exist three areas
G,, G_, andG (see Fig. 2 and}differing from each other in
C.(t)=- ie(i/h)EtSin(H_,t)_ (119 their quantum properties. Motion in the area of degenerate
statesG_ is a quantum analog of rotatory motion of the pen-
dulum, while motion in the area of degenerate st@ess an
analog of oscillatory motion of the pendulum. The aféa
lying betweenG_ and G, can be regarded as a quantum

Now, using Eq.(119), for the distribution|y(t)|? [Eq.
(115] we obtain

H H 1 HY analog of the classical separatrix. The main quantum pecu-
|¢(t)|2=co§(—t)|¢_|z+sin2<—t)|¢+|2——sin<2—t> liarity of the universal Hamiltonian is the appearance of
h h 2 h branching and merging points along energy term lines.

X[ (VYD) = YO (D] (1200  Branching and merging points define the boundaries between

the degenerate are@s and the nondegenerate a@alf the

In the expression foy(t)|* the first two terms correspond system defined by the universal Hamiltonian is perturbed by
to the transition probabilities —+ and +— —, respectively, a slowly changing periodic field, then on the plaig!) the
while the third term corresponds to the interference of thesgnfluence of this field produces the motion of the system
states. Distributior{120) corresponds to a pure state. along the Mathieu characteristics. If, moreover, the system is

Note that(like any other parameter of the problgtihe  in degenerate areas for a sufficiently long time, then the
valueH’ contains a certain small erréH’ <H’, which dur-  phase incursion of wave function phases occurs while the
ing the time of one passager2/H’ leads to an insignificant system passes through branching points, which leads to the
correction of the phasemsH'/H’). However, during the transition from the pure state to the mixed one. As a result of
time AT a phase incursion takes place and a small effr  a multiple passage through branching points, the populations
may lead to uncertainty of phase(sH'/A)AT which may  creep by energy term&ig. 5). The thus obtained mixed state
turn out to be of order 2. In that case the phase becomescan be regarded as a quantum analog of the classical stochas-
random. Therefore by the momeAT the distribution takes tic layer. The number of levels affected by the irreversible
the form that can be obtained from Ed.20) by means of creeping process is defined by the amplitude of the slowly
averaging with respect to the random phase(sH'/A)AT.  changing field.
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