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The quantum-mechanical investigation of nonlinear resonance in terms of approximation to moderate non-
linearity is reduced to the investigation of eigenfunctions and eigenvalues of the Mathieu-Schrodinger equa-
tion. The eigenstates of the Mathieu-Schrodinger equation are nondegenerate in a certain area of pumping
amplitude values in the neighborhood of the classical separatrix. Outside this area, the system finds itself in a
degenerate state for both small and large pumping amplitude values. Degenerate energy terms arise as a result
of merging and branching of pairs of nondegenerate energy terms. Equations are obtained for finding the
merging points of energy terms. These equations are solved by numerical methods. The main objective of this
paper is to establish a quantum analog of the classical stochastic layer formed in the separatrix area. With this
end in view, we consider a nonstationary quantum-mechanical problem of perturbation of the state of the
Mathieu-Schrodinger equation. It is shown that in passing through the branching point the system may pass
from the pure state to the mixed one. At multiple passages through branching points there develops the
irreversible process of “creeping” of the system to quantum states. In that case, the observed population of a
certain number of levels can be considered, in our opinion, to be a quantum analog of the stochastic layer. The
number of populated levels is defined by a perturbation amplitude.

DOI: 10.1103/PhysRevE.70.026219 PACS number(s): 05.45.Mt

I. INTRODUCTION: PROBLEM STATEMENT

Usually, quantum chaos means phenomena arising in a
quantum system at those parameter values for which a clas-
sical analog of the system has properties of dynamic stochas-
ticity. The Hamiltonian of such a system is written in the
form

Ĥ = Ho + lV̂, s1d

where Ĥo is the integrable part of the Hamiltonian. As ex-
perimental studies show[1,2], the main property character-
istic of quantum chaos is the repulsion of quasienergy terms
Ensld at those values of the parameterl for which, in the
case of classical consideration, there arises dynamic stochas-
ticity. Difficulties encountered in studying quantum chaos
make it necessary to pass from the quantum-mechanical de-
scription to the quantum-statistical one. The general theory
of the quantum-statistical description of systems in a state of
chaos is presented in the monograph by Haake[3]. In this
paper we will consider the case in which the integrable part

Ĥo is reduced to the universal Hamiltonian, and the total
Hamiltonian is of the form

Ĥ = Ĥosld + V̂std, s2d

where V̂std is the periodical interaction. In the considered
Hamiltonian (2) all difficulties of the quantum-mechanical
description are connected not with the total Hamiltonian as

in the case of model(1), but with its integrable part Hˆ
o. A

detailed analysis of eigenstates of the universal Hamiltonian
shows that the spectrumEn

s0dsld has a complicated and spe-
cific dependence on the parameterl since it contains degen-
erate and nondegenerate domains separated by numerous
branching points of the energy spectrum. Passages through
the branching points due to the periodic interaction ofVstd

can lead to the mixed state that can be considered as a mani-
festation of quantum chaos. The example of the universal
Hamiltonian considered in this paper is interesting because,
like all integrable systems, it allows us to define precisely all
quantum characteristics. However, these characteristics are
rather complicated to serve as the base of quantum chaos.

At the classical reviewing the motion generated by the
universal Hamiltonian on the phase space consists of two
types of topologically distinguished curves divided by the
separatrix[4]. As a consequence of the perturbation of tra-
jectories near the separatrix by the periodic perturbation
there arises a stochastic “layer”—the area of stochastic mo-
tion near the separatrix. At quantum reviewing Schrodinger
equation for the universal Hamiltonian is represented in the
form of the equation of Mathieu, solutions of which(wave
functions) are the periodic functions of Mathieu.

The Mathieu equation for the quantum-mechanical de-
scription of the atom, having a nonlinear energy spectrum
and subjected to the action of a resonance periodic field, was
obtained by Zaslavsky and Berman[5].

Many physical problems can be reduced to the solution of
the Mathieu equation. For example, in view of research of
the phenomenon of parametrical resonance, the analysis of
the Mathieu equations leads to the origin of zones of un-
stable motion[6]. In the study of motion of the electron in
the periodic potential field, the analysis of the Schrodinger
equation, which is reduced to the equation of the Mathieu,
explains the presence of forbidden energy zones in semicon-
ductors[7]. It is possible to cite other similar examples, how-
ever, the Mathieu-Schrodinger equation for the universal
Hamiltonian differs from them, because in this case the mo-
tion is finite and hence the energy spectrum without fail is
discrete. Depending on the values of the parameters of the
problem, the energy spectrum can become degenerate. In the
present work the condition of degeneration of the energy
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spectrum and, the reason for their emerging will be investi-
gated.

The main purpose of this paper is to describe a quantum
analog of the classical stochastic layer. For this, in the last
section we consider a nonstationary problem of eigenstate
perturbation for the Mathieu-Schrodinger equation. It is
shown that when passing through a branching point the sys-
tem may transit from the pure state to the mixed one. The
mixed state formed as a result of multiple passages through
branching points is, in our opinion, a quantum analog of the
stochastic layer.

II. UNIVERSAL HAMILTONIAN

Let us present the atom as a nonlinear oscillator under the
action of the variable monochromatic field. Then the Hamil-
tonian of the system atom1 field is of the form

Hsx,p,td = Hosx,pd + HNLsxd + «Vsx,td, s3d

where

Ho = 1/2Sp2

m
+ vo

2mx2D, HNL = bx3 + gx4 + . . . , s4d

Vsx,td = Vox cosVt, Vo = −
e

m
fo, « ! 1, s5d

wheree,m are the charge and mass of the electron,x,p are
the coordinate and impulse of the electron,vo is the eigen-
frequency,g andb are the coefficients at the nonlinear terms,
fo andV are the amplitude and frequency of a variable field.
InteractionVsx,td of the electron with the variable field we
shall consider as small perturbation.

Having made passage to the variables of action angle
sI ,ud with the help of transformations x
=s2I /mvod1/2cosu ,p=−s2Imvod1/2sin u, assuming that reso-

nance conditionu̇<V is fulfilled, and averaging the equation
with respect to fast phaseu from the Hamiltonian(3) we get

HsI,w,td = Ho
NL + «VsIdcosw, s6d

Ho
NL = voI + HNL, HNL =

3

2
S I

mvo
D2

g, s7d

VsId = V0sI/2mv0d1/2. s8d

Here we have introduced the slow phasew=u−Vt, which
in time <2p /V varies insignificantly. The resonance condi-
tion is fulfilled for the particular value of the actionIo, the
value of which can be found from the same resonance con-
dition

ẇ < vsIod = 0, s9d

where

vsId = S ] H0
NL

] I
D − V.

Introducing the dimensionless parameter of nonlinear-
ity [4]

«1 = Udv

dI
U I

v
s10d

and expanding Hamiltonian(7) in the series with respect to
small deviations of the actionDI = I − Io, in the approximation
of the moderate nonlinearity

« ! «1 ! 1/«, DI/Io ! 1, s11d

we obtain Hamiltonian in the form

H =
v8

2
sDId2 + V cosw, s12d

where

V = «VsIod, v8 = Udv

dI
U

I=Io

. s13d

Hamiltonian(12), called universal, as it is easy to note, is
similar to the Hamiltonian of the pendulum with “mass”
1/v8 and with “impulse” in the “gravity” field with accel-
eration of gravityg,V.

The value 1/v8 is in fact the measure of system inertness:
the higher 1/v8, the more difficult it is to take the system out
of resonance by means of pumping and, vice versa, the lower
1/v8, the easier it is to do so. If in Eq.(12) DI is substituted
by the appropriate operatorDI →−i"] /]w, one can obtain
the universal Hamiltonian in the quantum form

H = −
"2v8

2

]2

] w2 + V cosw. s14d

Hamiltonian (14) describes the joint motion of the atom
1 field system. Herev8 is the only parameter characterizing
the atom, while the pumping amplitudeV is the parameter
characterizing the field."2v8 is a minimal energy value con-
nected with nonlinearity and called quantum energy of non-
linearity.

III. SYMMETRIES OF THE MATHIEU-SCHRODINGER
EQUATION

Having written the stationary Schrodinger equation,

Ĥcn = Encn, s15d

for the Hamiltonian(14), we get

]2cn

] w2 + fEn − Vsl,wdgcn = 0, s16d

Vsl,wd = l cos 2w, s17d

where the dimensionless quantities are introduced,

En → 8En

"2v8
, l → 8V

"2v8
, s18d

and the replacementw→2w is done.
The Mathieu-Schrodinger equation was studied by

Zaslavsky and Berman in the quasiclassical approximation
[5]. In this work we shall investigate the Mathieu-
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Schrodinger equation in an essentially quantum area.
As is known[8], periodic solutions of Eq.(16) are given

by the Mathieu functions

ce2msl,wd, ce2m+1sl,wd, se2m+1sl,wd, se2m+2sl,wd,

s19d

which satisfy the normalization condition

1

p
E
o

2p

cn
2sl,wddw = 1, s20d

wherecnsl ,wd means Mathieu functions(19). To eigenfunc-
tions (19) there correspond the eigenvalues(Mathieu charac-
teristics)

a2msld, a2m+1sld, b2m+1sld, b2m+2sld, s21d

which also depend on the parameterl.
The properties of symmetry of the Mathieu function can

be presented[8] in the form of Table I. By immediate check
it is easy to be convinced that four elements of transforma-
tion

Gsw → − wd = a, Gsw → p − wd = b,

Gsw → p + wd = c, Gsw → wd = e s22d

form a group. For this purpose it is enough to test the real-
ization of the following relations:

a2 = b2 = c2 = e,

ab= c, ac= b, bc= a. s23d

Group G contains three elementsa,b,c of the second
order and unity elemente. The groupG is isomorphic to the
well-known group of Klein[9,10]. This group is known in
group theory by the applications to quantum mechanics. All
the elements of the group commute. This assertion can be
easily checked taking into account group operations(23). So,
the symmetry group of the Mathieu functionG is the Abelian
group and has only one-dimensional indecomposable repre-
sentations.

Therefore Mathieu functions(19) corresponding to the
symmetry groupG describe nondegenerate states.

The group of transformationsG is not a simple group
since it contains subgroups. When combined with the unit
element, each of three elementsa,b,c forms a subgroup of
second order:

G

↗ G+:e,b,

→ G−:e,c,

↘ Go:e,a.

s24d

Moreover, as can be easily verified, these subgroups are in-
variant subgroups.

As is known from the theory of groups, the existence of
subgroups indicates the existence of degenerate states of the
system with a higher symmetry than the symmetry defined
by the basic groupG. Since in our case these subgroups are
invariant subgroups of second order, we may expect the oc-
currence of degenerate states of second order. Thus, by virtue
of general arguments based on the symmetry properties of
the Mathieu-Schrodinger equation, we conclude that the sys-
tem has both degenerate and nondegenerate states.

IV. DEGENERATE STATES OF THE
MATHIEU-SCHRODINGER EQUATION

In the theory of Mathieu functions, the graphs of the ei-
genvaluesansld and bnsld as functions ofl are plotted by
numerical methods(11) and(12). As seen from these graphs,
curvesansld and bnsld merge for smalll, while curvesansld
and bn+1sld merge for largel. It is obvious that the merged
segments of the Mathieu characteristics correspond to the
degenerate states whose existence has been mentioned
above. In this section, we will define the wave functions of
degenerate states and obtain equations for finding the merg-
ing (or branching) points of the Mathieu characteristics. Be-
low, the presence of branching points will play an essential
in role in explaining the transition from the pure state to the
mixed one during the quantum investigation of the dynamics
near the classical separatrix.

In what follows, we will use the plane with coordinates
l ,E. In the classical consideration, the motion of a math-
ematical pendulum in a neighborhood of the separatrix oc-
curs when the initial kinetic energy of the pendulum is close
to the maximal potential one. It is obvious that, on the plane
sl ,Ed, to this condition there corresponds the straight linel
=E. Therefore we can say that, on the planesl ,Ed, to nonde-
generate states there corresponds a certain domain lying on
both sides of the linel =E. It is in this very domain of the
change ofl that the system is characterized by symmetry
groupG.

A. Degeneration of states at smalll: Area on the left of the
separatrix line

In the limit l →0 the equation of the Mathieu-Schrodinger
equation(16) takes the form

d2cn

dw2 + Encn = 0. s25d

The orthonormalized system of solutions of Eq.(25) consists
of even and odd solutions

cg = cosnw, cu = sin nw. s26d

They both correspond to the same energy valueEn=n2,
i.e., for l =0 there occurs a doublefold degeneration of levels.

TABLE I. The relations of a symmetry for the Mathieu
functions.

Gswd Gs−wd Gsp−wd Gsp+wd
ce2mswd ce2mswd ce2mswd ce2mswd
ce2m+1swd ce2m+1swd −ce2m+1swd −ce2m+1swd
se2m+1swd −se2m+1swd se2m+1swd −se2m+1swd
se2m+2swd −se2m+2swd −se2m+2swd se2m+2swd
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Note that functions(26) correspond to the well-known lim-
iting sl →0d forms of Mathieu functions[11]:

censwd → cosnw, senswd → sin nw. s27d

This means that at the diminution ofl the coming together
of the energy terms with the identicaln takes place and for
l =0 they are merged together. It is necessary to find out that
this confluence happens at the pointl =0 or at l = l−

sndÞ0. In
this section, below we will be concerned with finding a lower
point of the merging of termsl−

snd.
At first let us find out what the eigenfunctions of the de-

generated states corresponding to the levelEn=n2 look like.
Equation(25) is the Schrodinger equation for free rotation in
the phase planew. The continuous Abelian group of two-
dimensional rotations O+s2d [9] corresponds to this motion.

Since the Abelian group may have only one-dimensional
irreducible representations, the two-dimensional representa-
tion constructed in the base of real-valued functions(26) will
be reducible. Hence functions(26) cannot be eigenfunctions
of a degenerate state. To surmount this problem we shall
recollect that the eigenfunctions for the degenerate condition
can be also complex.

As is known [10], symmetry relative to the time sign
change in the Schrodinger equation accounts for the fact that
the complex-conjugate wave functions correspond to one and
the same energy eigenvalue. Therefore two complex-
conjugate representationscnswd and cn

*swd should be re-
garded as a representation of doubled dimension[9,10]. Usu-
ally, for the base of the indecomposable representation of the
group O+s2d complex functions are taken[9],

cnswd = e−inw. s28d

So, in the degenerate area in view of conditions of nor-
malization[see Eq.(20)], for eigenfunctions complex conju-
gate functions should be taken

cnswd =
Î2

2
e−inw, cn

*swd =
Î2

2
einw. s29d

Let us remark that group O+s2d is isomorphic to subgroup
G− (24). The element of symmetryc=Gsw→p+wd of sub-
group G− provides recurrence of the phase variation after
each period and consequently the symmetryG− characterizes
the condition of motion similar to the classical rotary motion.

However, to use only the argument of symmetry is not
sufficient for finding the coordinates of the branching point
l−
snd. Below to find these points we use the secular perturba-

tion theory.
So, at l =0 we have doubly degenerate states with the

wave functions(29). Let us find out, whether the perturba-
tion

Vsl,wd = l cos 2w, l ! 1 s30d

can remove the existing degeneration.
As is known, first order terms of the perturbation theory

for the energy eigenvalues and the exact functions of zero
approximation for double degenerate levels look like[10]

Eo±
s1d =

1

2
fsV11 + V22d ± ÎsV11 + V22d2 + 4uV12u2g, s31d

cn
± = csod = C1c1

o + C2c2
o, s32d

C1
s0d = H V12

2uV12u
F1 ±

V11 − V22

ÎsV11 − V22d2 + 4uV12u2
GJ1/2

,

C2
s0d = ± H V12

2uV12u
F1 7

V11 − V22

ÎsV11 − V22d2 + 4uV12u
GJ1/2

,

s33d

where the index in brackets corresponds to the order of the
perturbation theory. Matrix elements of the perturbation(30)
Vsi ,k=1,2d are calculated by using of functions(29) of the
degenerate state of the unperturbed Hamiltonian. Taking into
account expressions(29) we shall calculate the matrix ele-
ments:

V11 = lE
o

p

cn
*swdcnswdcos 2wdw = 0, V22 = 0, s34d

V12 = lE
o

p

cn
2swdcos 2wdw = 5 0 i f n Þ 1

lp

4
i f n = 1

. s35d

After substitution of those matrix elements in the expres-
sions (33) for the eigenvalues and exact eigenfunctions we
shall obtain

E±
s1d = ±

lp

4
, cn=1

+ = cosw, cn=1
− = − i sin w. s36d

Thus the exact wave functions(36) of the undegenerate
states only forn=1 coincide with the Mathieu function in the
limit (27) sl →0d.

The perturbationVsl ,wd removes degeneration only for
the staten=1. Therefore it is only for the staten=1 that the
spectrum branching occurs at the pointl =0, which agrees
with numerical calculations given in the form of diagrams
[12]. It can be assumed that in the case of diminishingl, the
merging of energy terms for statesnÞ1 takes place at the
point at which the states are still defined by the Mathieu
functions and not by their limiting values(27). Wave func-
tions for degenerate statesl Þ0,nÞ1 can be composed of
the Mathieu functions by using the same arguments as have
been used above in composing the wave functions forl →0
[Eq. (28)]. As a result, we obtain

c+
2m+1 = cnsl,wd =

Î2

2
scenw ± isenwd, n = 2m+ 1,

s37d

c±
2m+2 = cn

*sl,wd =
Î2

2
scenw ± isenwd,
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n Þ 1, l Þ 0, n = 2m+ 2. s38d

Let us assume that atln= l−
snd the removal of degeneration

for the nth energy term happens. Then, accordingly, on the
left and right from l−

snd the Mathieu-Schrodinger equation
(14)–(17) is possible to rewrite as

Ĥslndc = Eslndc, l−
snd ø ln,

Ĥslndc = Eslndc, l−
snd ù ln. s39d

SinceĤ depends onl continuously[Eq. (14)] then in im-
mediate proximity to the pointsln it is possible to write

Ĥsln . l−
sndd < Ĥsln , l−

sndd +
] Ĥ

] ln
dln, s40d

wheredln is the infinitesimal area close toln. With account of
Eq. (14) it is possible to write

] Ĥ

] ln
dln = − dln cos 2w. s41d

Substituting in Eq.(40) Ĥsln, l−
sndd→ Ĥ and Ĥsln. l−

sndd
→ Ĥo, the Hamiltonian near the pointl = ln we shall present
in the form

Ĥ = Ĥo + V̂sdl,wd, s42d

where

Ĥo =
]2

] w2 − l cos 2w, s43d

V̂sdl,wd = − dl cos 2w, dl . 0. s44d

Here for brevity we replaceddln by dl.
Let us write the perturbation matrix elements(44) for odd

degenerate states(37)

V±7
2m+1 =

1

p
E
o

p

c±
2m+1Vsdl,wdsc7

2m+1d*dw

=
dl

p
E
o

p

sce2m+1
2 − se2m+1

2 ± i2ce2m+1se2m+1d

3cos2wdw, s45d

V±±
2m+1 =

1

p
E
o

p

c±
2m+1Vsdl,wdsc±

2m+1d*dw

=
dl

p
E
o

p

sce2m+1
2 + se2m+1

2 dcos 2wdw. s46d

Here for brevity we write Mathieu functions without ar-
gumentsw and l. Moreover, as the Mathieu functions for the

smalldl as a result of continually depending from the param-
eter l changes slightly(see Fig. 1), at the calculation of ma-
trix elements we neglect this dependence.

To calculate the matrix elements(46) and (47) we use
formulas of expansion of Mathieu functions into Fourier se-
ries [8],

ce2m+1 = o
r=0

`

A2r+1
2m+1coss2r + 1dw, s47d

se2m+1 = o
r=0

`

B2r+1
2m+1sins2r + 1dw. s48d

The factors of expansionA2r+1
2m+1 andB2r+1

2m+1 are defined with
the help of well-known recursion relations[8,11,12]. Substi-
tuting Eqs.(47) in Eqs. (45) and (46), after simple integra-
tion, having omitted superscripts for simplicity, one can ob-
tain

V+− = V−+ =
dl

4 o
r=0

`

hA2r+1sA2r+3 + A2r−1d − B2r+1sB2r+3

+ B2r−1dj, s49d

V++ = V−− =
dl

4 o
r=0

`

hA2r+1sA2r+3 + A2r−1d + B2r+1sB2r+3

+ B2r−1dj. s50d

These expressions can be simplified with the help of the
recursion relations[8] for A2r+1,

2fa2m+1 − s2r + 1d2gA2r+1
2m+1 − l−

2m+1sA2r−1
2m+1 + A2r+3

2m+1d = 0,

s51d

FIG. 1. Plots of the Mathieu functionsce4sl +dl ,wd , ce4sl ,wd, at
values of parameters near the point of branching,l =2,dl =1, plotted
by the use of numerical methods. It is obvious that the small varia-
tion of the parameterl leads to the small variation of the Mathieu
functions.
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2fb2m+1 − s2r + 1d2gB2r+1
2m+1 − l−

2m+1sB2r−1
2m+1 + B2r+3

2m+1d = 0,

s52d

wherea2m+1=a2m+1sld and b2m+1=b2m+1sld are energy terms
(Mathieu characteristics[11]) in the nondegenerate area for
the statesce2m+1 and se2m+1 accordingly. In the degenerate
area the termsa2m+1 andb2m+1 converge. Determining from
Eqs.(51) and(52), A2r−1+A2r+3 andB2r+1+B2r+3, and substi-
tuting in Eqs.(49) and (50), we obtain

V++
2m+1 = V−−

2m+1 =
dl

l−
2m+1Fa2m+1 + b2m+1

2
−

1

2
sÃ2m+1 + B̃2m+1dG ,

s53d

V−+
2m+1 = V+−

2m+1 =
dl

l−
2m+1Fa2m+1 − b2m+1

2
−

1

2
sÃ2m+1 − B̃2m+1dG ,

s54d

where

Ã2m+1 = o
r=0

`

s2r + 1d2fA2r+1
2m+1g2, B̃2m+1 = o

r=0

`

s2r + 1d2fB2r+1
2m+1g2.

s55d

For the deriving of the formulas(53) and(54) we used the
relations[8,11]

o
r=0

`

fA2r+1g2 = 1 ando
r=0

`

fB2r+1g2 = 1 s56d

and for brevity we wrote the superscript without brackets
sl−

s2m+1d→ l−
2m+1d.

Substituting the matrix elements(53) and (54) in the ex-
pressions of perturbation theory in the approximation of first
order with respect to energy eigenvalues and for exact func-
tions of zero approximation(31)–(33) we get

E+ =
dl

l−
2m+1fa2m+1sl−

2m+1d − Ã2m+1sl−
2m+1dg,

E− =
dl

l−
2m+1fb2m+1sl−

2m+1d − B̃2m+1sl−
2m+1dg, s57d

c+
2m+1sl−

2m+1,wd = ce2m+1sl−
2m+1,wd,

c−
2m+1sl−

2m+1,wd = ise2m+1sl−
2m+1,wd. s58d

After equating the corrections of energyE+=E− [Eq. (57)]
and taking into accounta2m+1sl−

2m+1d=b2m+1sl−
2m+1d, we obtain

the equations defining branching points,

Ã2m+1sl−
2m+1d = B̃2m+1sl−

2m+1d. s59d

According to Eq.(55), both sides of Eq.(59) depend on
the coefficients of Fourier expansions of the Mathieu func-
tions(47) and(48), which in their turn depend onl. Equation
(59) can be solved only by numerical methods(Table II).

The exact functions of the zero order(58) accurate to the
insignificant phase multiplier coincide with the appropriate

pair of wave functions(19) from the states of the undegen-
erate area. So in pointsl−

2m+1 the wave functions of the de-
generate states turn into the wave functions of the undegen-
erate states.

Similarly it is possible to calculate the matrix elements for
even statesV±±

2m andV±7
2m, taking into account expansion for-

mulas of functionsce2msl ,wd and se2msl ,wd in the Fourier
series[8,11] and also by use of the similar to Eqs.(51) and
(52) relations of recursion. Omitting mathematical details of
these calculations, we present final results for approximation
of first order with respect to energy eigenvalues and for exact
wave functions of zero approximation:

E+ =
dl

l−
2mfa2msl−

2md − Ã2msl−
2mdg,

E− =
dl

l−
2mfb2msl−

2md − B̃2msl−
2mdg, s60d

c+
2msl−

2m,wd = ce2msl−
2m,wd,

c−
2msl−

2m,wd = ise2msl−
2m,wd. s61d

The points of a branchingl−
2m of energy terms are obtained

(by using numerical methods, see Table II) with the help of
an equation which can be obtained by means of equating
corrections of energy terms(60), E+=E−:

Ã2msl−
2md = B̃2msl−

2md. s62d

Exact wave functions of the zero order(61), accurate to a
nonstationary phase factor coincide with the appropriate pair
of functions from Eq.(19), describing the nondegenerate
states. In other words, in the pointl−

2m the removal of degen-
eration happens.

On the basis of obtained results it is possible to present a
qualitative picture of the variation of energy terms on the
planesE, ld in the left-hand area from the line of the separa-
trix (Fig. 2).

At the end of this section we shall remark that the degen-
erate state, located at the left of the separatrixes line, can be
considered as an analog of classical rotary motion.

B. Degenerate states at majorl: Area on the right
of the separatrix line

With the increasing ofl the particle can be trapped in a
deep potential well(V= l cos 2w ,0,w,p, Fig. 3), perform-

TABLE II. The results of numerical calculations for the coordi-
nates of left branching points.

n

Left points of branching

l−
2n+2 (48) l−

2n+1 (45)

0 0.30 0

1 2.0 1.2

2 8.0 4.5

3 28.0 13.0
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ing oscillatory motion. Properties of wave functions of the
quantum oscillator near the bottom of the well are well
known. This is the alternation of even and odd wave func-
tions relative to the center of the potential wellp /2 and the
presence of zeros of wave functions. With the help of the
third column of Table I it is possible to write symmetry con-
ditions close top /2:

cemSp

2
+ wD = s− 1dmcemSp

2
− wD ,

semSp

2
+ wD = s− 1dm+1semSp

2
− wD , s63d

i.e., ce2mswd , se2m+1swd are even functions and
se2mswd , ce2m+1swd are odd functions. Functions
ce2mswd , se2m+1swd , ce2m+1swd, and se2m+2swd have m real
zeros betweenw=0 andw=p /2 (not considering zeros on
edges).

The existing alternation of states(Fig. 2) in the area along
the line of the separatrix is conditioned by the properties of
states at the smalll. With the help of the expressions(63) it
is possible to determine easily that in the spectrum of the
states along the lineE= l two (instead of one) even states
alternate with two odd states, and so on. To get the alterna-
tion, caused now by properties at majorl, two even states
must degenerate in one even, and two odd in one odd. So we

come to the conclusion that with increasingl two levels with
wave functionsce2mswd andse2m+1swd coming nearer amal-
gamate in one level, and other two levels,ce2mswd and
se2m+1swd, also in one level. The levels obtained in this way
will be doubly degenerated. It can be assumed that with the
growth of l the states defined by the symmetry groupG
transform to the states with the symmetry of an invariant
subgroupG+ [Eq. (24)]. This transformation takes place at
the merging point of nondegenerate termsl = l+

snd. Recall that
subgroupG+ contains two elements: the unit elemente and
the reflection element with respect to the symmetry center of
the well b=Gsw→p−wd. Complex wave functions of the
area of degenerate states, with the symmetry of the invariant
subgroupG+, can be composed of pairs of functions of
merged states in the same manner as we have done above for
the area of smalll for states with the symmetry ofG−.

Not iterating these reasons, we shall write complex wave
functions corresponding to the degenerated states in the form

j2m
± swd = ce2mswd ± ise2m+1swd, even states, s64d

z2m+1
± swd = ce2m+1swd ± ise2m+2swd, odd states. s65d

In the base of complex wave functionsj2m
± andz2m+1

± the
indecomposable representation of the subgroupG+ is real-
ized. Parity of the wave functionsj2m

± andz2m+1
± with respect

to the transformations of the subgroupG+ characterizes an
important property of wave functions evenness of the quan-
tum oscillatory process.

Let us set about with the calculation of the matrix ele-
ments of interaction(44) for the states given by the wave
functions(64):

W±7
2m =

dl

p
E
o

2p

j2m
± cos 2wsz2m

7 d*dw s66d

and

W±±
2m =

dl

p
E
o

2p

j2m
± cos 2wsz2m

± d*dw, dl , 0. s67d

Let us use expansion formulas in the Fourier series[8] for
the Mathieu functions with even index

ce2m = o
r=0

`

A2r
2m cos 2rw,

se2m = o
r=0

`

B2r
2m sin 2rw s68d

and by recurrence relations

sE − 4r2dA2r − dlsA2r−2 + A2r+2d = 0, E = a2msld,

r = 2,3, . . . ,

fE − s2r + 2d2gB2r − dlsB2r + B2r+4d = 0, E = b2m+2sld,

FIG. 2. The energy levels as a function of parameterl on the
planesE, ld on the left area from the separatrix line. The points of
the branching of curves represent the boundaries between degener-
ate and nondegenerate states.

FIG. 3. The dependence of interaction energyV on phasew. The
interaction has the following properties of symmetry: 1.Vswd
=Vs−wd ; 2 .Vswd=Vsp+wd ; 3 .Vswd=Vsp−wd.
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r = 1,2, . . . . s69d

After simple calculations similar to those in the previous
section, we shall get

W++
2m = W−−

2m =
1

2
sa2m + b2md −

1

2
sAo

2 + Ã2m + B̃2md, s70d

W+−
2m = W−+

2m =
1

2
sa2m − b2md −

1

2
sAo

2 + Ã2m + B̃2md, s71d

where

Ã2m = o
r=1

`

s2rd2fA2r
2mg2, B̃2m = o

r=0

`

s2rd2fB2r
2mg2. s72d

For deriving of the formulas(70) and (71) we have used
the relations[8,11]

2fAog2 + o
r=1

`

fA2rg2 = 1 ando
r=0

`

fB2r+1g2 = 1. s73d

Substituting the matrix elements(70) and (71) in the for-
mulas of the secular perturbation theory for the first order
terms of the energy eigenvalues and for exact functions of
the zero approximation(33) we shall obtain

E+
2m =

dl

l+
2mfa2msl+

2md − Ao
2 − Ã2mg,

E−
2m+1 =

dl

l+
2mfb2m+1sl+

2md − B̃2m+1g, s74d

c1
sod = ce2mswd,c2

sod = i se2m+1swd. s75d

After equating the corrections of energies(74) E+=E− and
taking into account the fact that at the point of merging of
termsa2msl+

2md=b2m+1sl+
2md, we obtain the equation for find-

ing l+
2m:

Ao
2 + Ã2m = B̃2m+1. s76d

Equation(76), like Eq.(62), can be solved only by numerical
methods(see Table III).

The similar calculations can be easily done for the odd
statesj±

n [Eq. (65)]. As follows from these calculations, at
particular valuesl the degeneration is removed. The results,
obtained in this section, are plotted in Fig. 4.

Figures 2 and 4 supplement each other: in the field of
intersection with the separatrix the curves of the Figs. 2 and
4 are smoothly joined.

So, we shall add up outcomes obtained in this section.
The Mathieu-Schrodinger equation has an appointed symme-
try. The transformations of the symmetry of the Mathieu
functions form groupG, which is isomorphic to the quater-
nary group of Klein. To this symmetry on a planesE, ld cor-
responds the appointed area along the line of the separatrix
E= l, containing nondegenerated energy terms. This area is
restricted double sided by the areas of degenerate states,
which are characterized by the symmetry properties of the
invariant subgroupsG− andG+, respectively. The boundaries
of these areas are defined by the branching points of energy
terms existing both on the right and on the left of the sepa-
ratrix. Equations for determining the branching points of en-
ergy terms are obtained. The equations are solved only nu-
merically.

The area of degenerate states is the quantum-mechanical
analogs of two forms of motion of the classical mathematical
pendulum—rotary and oscillatory. Comparing results of
quantum reviews with classical, we remark that these two
conditions of motion at quantum reviewing are divided by
the area of a finite measure, whereas at the classical review-
ing measure the separatrix is equal to zero.

V. INTEGRALS OF MOTION: AVERAGE VALUES OF
SOME OBSERVABLE QUANTITIES

Let us find out the complete set of physical quantities for
our system. For this purpose it is necessary to write all trans-
formations which commute with the Hamiltonian(14). As
we already have established(see Table I), these transforma-
tions form a quaternary group of Klein. In this paragraph we
compare to each element of this group the appropriate
quantum-mechanical operators producing these transforma-
tions. So, the element of groupa is the operator of inversion

ÎofÎocswd=cs−wdg, which commutes with the HamiltonianĤ
[Eq. (14)],

ĤÎo − ÎoĤ = 0. s77d

TABLE III. The results of numerical calculations for the coor-
dinates of right branching points.

n

Right points of branching

l+
2n l+

2n+1

1 15.0 17.5

2 25.0 32

3 41 51

FIG. 4. The energy levels as a function of the parameterl on the
planesE, ld on the area to the right of the separatrix line. The points
of the branching of curves represents points of degeneration of
terms in this area.
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The eigenfunction of the Hamiltoniancswd also is the

eigenfunction for the operator of the inversionÎo,

Îocswd = Iocswd. s78d

Acting once again on Eq.(78) by means of operatorÎo

one can obtainÎ2
ocswd= Io

2cswd=cswd. It follows that eigen-
values of the operator of inversion areIo= ±1. Thus the
eigenfunctions have fixed parity, which remains invariable in
time. The elementb of the Klein symmetry group, also com-
muting with the Hamiltonian, is the operator of inversion

relative to the center of the potential well(Fig. 3)—Îp/2. It is
possible to show similarly that the relevant eigenvalues of

the operator areÎp/2= ±1. The elementc of the Klein sym-
metry group, commuting with the Hamiltonian, is the opera-

tor of translationT̂p with respect to the phase on the distance

p. The eigenvalues of the operator of translationT̂p areTp

= ±1.
In the area of nondegenerate states designated in Figs. 2

and 4 by means ofG, all four operators form the compete

set: the energyĤ, inversionÎo, inversion concerning the cen-

ter of the wellÎp/2, and translation with respect to the phase

Îp have the same eigenfunctions. For example to the eigen-
state ce2n+1sld corresponds the energy terma2n+1swd , Io

=1, Ip/2=−1, Tp=−1. In Table IV we reduce quantum num-
bers for eigenfunctions for the undegenerate states.

In the degenerated area designated byG− in Fig. 1, where
the states are characterized by wave functionsc2m

± andc2m+1
±

[Eq. (36)], operators of symmetry produce transformations

Îoc2m
± = c2m

7 , Îoc2m+1
± = c2m+1

7 ,

Îp/2c2m
± = c2m

7 , Îp/2c2m+1
± = − c2m+1

7 , s79d

T̂pc2m
± = c2m

± , T̂pc2m+1
± = − c2m+1

± . s80d

According to the relations(79), the wave functionsc2m
±

andc2m+1
± are not eigenfunctions for the inversion operators

Îo andÎp/2, but are eigenfunctions for the Eq.(80) operator of

translationT̂p.
This result is easy to understand because degenerate area

G− corresponds to the rotary motion. Since the rotary motion
is valid for the sufficient high energiesE. l−. l, properties
of the symmetry(Fig. 3), defining the properties of the sys-

tem at the inversion, are unessential. In this area translation
symmetry leading to the infinite motion, i.e., periodic recur-
rence, plays an essential role.

From relations(79) and(80) it follows that at the passage
from areaG into areaG− the destruction of two integrals of

motion [Io and Îp/2, Eq. (79)] happens, but the other two—

energy andT̂p—are maintained[Eq. (80)].
In degenerate areaG+ (Fig. 1), in which the states are

characterized by wave functionsjn
± and zn

± [Eqs. (64) and
(65)], the operators of the symmetry produce transformations

Îoj2m
± = j2m

7 , Îoz2m+1
± = z2m+1

7 ,

T̂pj2m
± = j2m

7 , T̂pz2m+1
± = − z2m+1

7 , s81d

Îp/2j2m
± = j2m

± , Îp/2z2m+1
± = − z2m+1

± . s82d

From relations(81) and (82) also follows that at the pas-
sage from areaG into areaG+ the destruction of two inte-

grals of motion[Îo and T̂p, Eq. (81)] happens, but the other

two—energy andÎp/2 [Eq. (82)]—are maintained.
It is clear from relations(81), that the wave functionsjn

±

are not eigenfunctions for the operatorsIo andT̂p. The func-
tions jn

± are the eigenfunctions for the operator of inversion

with respect to the symmetry axis of the potential well—T̂p/2
(Fig. 3). This result can be understood by assuming that the
degenerate areaG+sE, l+, ld corresponds to the oscillatory
motion performed by the particle captured in the potential

well. Because the action of operatorsÎo and T̂p transfers the
particle to the other “potential wells”(i.e., hinder the capture
in one of the potential wells), determining by them properties
of the system in case of oscillatory motion will be inessen-
tial. The main role in areaG+ takes the symmetry relatively

to the center of the potential holeÎp/2, describing parity of
the oscillatory states.

Let us proceed to the computation of some physical quan-
tities characterizing the system. Our interest will be fixed on
the computation of the mean of the action variationDI and
its squaresDId2:

kDÎl = − i
"

2
KcU ]

] w
UcL, ksDÎd2l = −

"2

4
KcU ]2

] w2UcL ,

s83d

where

kcuÂucl =
1

p
E
o

2p

cswdAc*swddw.

The mean calculated with the help of different wave func-
tions of the system, for different areas of the planesE, ld,
naturally will be different. Let us begin with the case of the
free rotationsl =0d. With the help of the wave functions(29)
we shall obtain

Kc1,2U ]

] w
Uc1,2L = ± in. s84d

TABLE IV. Table of energy terms and quantum numbers for the
eigenfunctions of nondegenerate statessl .0d.

E0 I0 Ip/2 Tp

ce2msl ,wd a2msld 1 1 1

ce2m+1sl ,wd a2m+1sld 1 −1 −1

se2m+1sl ,wd b2m+1sld −1 1 −1

se2m+2sl ,wd b2m+2sld −1 −1 1
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Two signs in Eq.(84) correspond to rotation in two op-
posite directions. The wave functionsc1,2 are the eigenfunc-
tions all at the same time for the Hamiltonian(25) and for
the operator] /]w. Therefore for these states the eigenvalues
and the average values coincide. For the computation of the
mean the operator]2/]w2 suffices to raise to the square
power expression(84).

For areaG− the wave functions can be written down in the
form (37) and(38). In this area] /]w does not commute with
the Hamiltonian(14) and the appropriate values are not pre-
cisely measurable. For the average value] /]w with the use
of wave functions(37) and expansion formulas in the Fourier
series(47) and (48) we shall get

Kc2n+1
± U ]

] w
Uc2n+1

± L = ± iA2n+1B2n+1, s85d

where

A2n+1B2n+1 = o
r=0

`

s2r + 1dA2r+1B2r+1.

Two signs before the sum correspond to the different direc-
tions of rotation. For the calculation of the average value
]2/]w2 we shall take advantage of the energy integral with
the help of which it is possible to produce the replacement
]2/]w2→−sEo− l cos 2wd. In view of it we shall get

Kc2m+1
± U ]2

] w2Uc2m+1
± L = − Eo + V±±. s86d

Substituting in Eq.(86) the results of the previous evalu-
ations for theV++ [Eq. (50)], we shall obtain

Kc2m+1
± U ]2

] w2Uc2m+1
± L = −

1

2
fÃ2m+1 + B̃2m+1g. s87d

As was expected, the square of the mean(85) does not
coincide with the mean of square(87).

Let us calculate the average values of quantities for the
states of undegenerate areaG. With the help of wave func-
tions (19) we obtain

KcnU ]

] w
UcnL =

1

p
E
o

2p

cnswd
]

] w
cn

*swddw = 0. s88d

Having taken advantage of the energy integral(14) for
computation of the mean of]2/]w2 for the system in the state
c2n+1=se2n+1swd, we shall get

Kse2n+1U ]2

] w2Use2n+1L = − En +
l

p
E
o

2p

se2n+1
2 cos 2wdw

= − B̃2n+1. s89d

And at last, with the help of the statesjm
± of the degener-

ate areaG+ for the mean we shall obtain

Kjm
±U ]

] w
Ujm

±L = 0 s90d

and

Kj2m
± U ]2

] w2Uj2m
± L = − Em +

1

p
E
o

2p

fj2m
± swdg2 cos 2wdw

= − 1
2fAo

2 + Ã2m + B̃2m+1g. s91d

With the help of expressions(83) and the results obtained
in this section[Eqs.(84)–(91)], we can compose the table of
mean value variations for the action’s deviation mean and its
square with the increase ofl (Table V).

As follows from Table V, the relationkDIln
2=ksDId2ln is

fulfilled only for the values of the columnl !Eo. This is
understandable if we recall that it is only in this case that the
system is in the eigenstate of the operatorDI ,] /]w and
therefore its eigenvalues are defined precisely. In all other
cases the system is not in the eigenstate of the operatorDI
and therefore for the columnsG− ,G, and G+ we have
kDIln

2Þ ksDId2ln.
Using Table V, we can observe howkDIln diminishes to

zero with the growth ofl. This is understandable if we recall
that the valuekDIln is proportional to the rotational compo-
nent of motion. Indeed, in the first columnsl =0d of Table IV
the value of kDIln corresponds to the free motion mode,
while in the second columnsl , l−d the value ofkDIln corre-
sponds to the rotation weakened by the influence of a peri-
odic potential. The third and fourth columns(l−, l , l+ and
l+, l) correspond to the quantum analogs of the separatrix
and oscillatory motion, respectively, where the rotational
component is totally absentkDIln.

VI. QUANTUM ANALOG OF THE STOCHASTIC LAYER

In the case of Hamiltonian systems performing a finite
motion, a stochastic layer formed in a neighborhood of the
separatrix under the action of an arbitrary periodic perturba-
tion is a minimal phase space cell that contains the gem of

TABLE V. Some average values of the action deviation and its
square for the states corresponding to the different areas of the
planesE, ld.

l !E0

l =0
l , l−,E0

G−

l−, l , l+
G

E0, l+, l
G+

kDI_ln

7
"

2
n 7

"

2
A2m+1B2m+1

0 0

ksDI_d2ln "

2
n2 "2

4

Ã2m+1B̃2m+1

2

"2

4
B̃2m+1 "2

4

A0
2Ã2m + B̃2m+1

2
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stochasticity[4]. In this section we shall try to find out what
can be considered as the quantum analog of the stochastic
layer.

Let us assume that the pumping amplitude is modulated
by the slow variable electromagnetic field. The influence of
modulation is possible to take into account by means of such
replacement in the Mathieu-Schrodinger equation(16),

l → l + Dl cosnt, Dl , l . s92d

HereDl stands for the amplitude of modulation in dimen-
sionless units[see Eq.(18)], n is the frequency of modula-
tion. We suppose that the slow variation ofl can embrace
some quantity of the branching points on the left and on the
right of the separatrix line(Figs. 1 and 2),

Dl ù ul+
n − l−

nu, n = 1,2, . . . ,N. s93d

As a result of replacement(92) in the Hamiltonian(14),
we get

Ĥ = Ĥo + Ĥ8std, s94d

Ĥ8std = Dl cos 2w cosnt, s95d

whereĤo is the universal Hamiltonian(14) and Ĥ8std is the
perturbation appearing as a consequence of the pumping
modulation.

It is easy to see that the matrix elements of perturbation

(95) Ĥ8std for nondegenerate states are equal to zero. Really,
having applied expansion formulas of the Mathieu functions
in the Fourier series(47) and (48) it is possible to show

kcenuĤ8stdusenl , E
o

2p

censwdcos 2wsenswddw = 0 s96d

for even as well as for oddn. The expressions of the selec-
tion rules(96) will be fulfilled for valuesl from the areal−

n

ø l ø l+
n. Transitions between levels cannot be conditioned by

the time-dependent interaction(95). It is expedient to include
Eq. (95) in the unperturbed part of the Hamiltonian. The
Hamiltonian, obtained in such a way, is slowly depending on
the parameterl. So, instead of Eqs.(94) and (95) for the
nondegenerated areaG we get the Hamiltonian in the form

Ĥ = −
]2

] w2 + lstdcos2w, s97d

lstd = l + Dl cosnt. s98d

There arises the situation in which the system slowly
“creeps” along the Mathieu characteristics and, in doing so,
encloses the branching points on the leftl−

n or on the rightl+
n.

A. Irreversible “creeping” of energy term populations due to
the influence of a measuring arrangement

According to the general rules of quantum mechanics,
probabilities that the system will pass to the eigenstate of
another area are defined by the coefficients of expansion of

the wave function of one area into the eigenfunctions of an-
other area. Let us assume that, initially, the system was in
one of the eigenstates from the nondegenerate areaG, for
example in the statece2n. After a quarter of the modulation
period T/4 (where T=2p /n), having passed through the
point l−

n, the system finds itself in the degenerated areaG−. In
this case the system will pass to degenerate statesc2n

± with
probabilities,

Psce2n → c2n
± d = * 1

p
E
o

2p

ce2nswdc2n
±*swddw*

2

=
1

2p*E
o

2p

ce2nswdfce2nswd ± ise2nswdg*dw*
2

=
1

2
.

s99d

For deriving Eq.(99) we used the condition of normalization
(20) and orthogonality[8]

E
o

2p

cekswdsel+1swddw = 0, l,k = 0,1,2, . . . . s100d

The passage(99) is based on the assumption of having a
deep physical sense. As is generally known, in quantum me-
chanics symmetry with respect to both directions of time is
expressed in the invariance of the wave equation with respect
to the variation of the sign of timet and simultaneous re-
placementc by way of c* . However, it is necessary to re-
member that this symmetry concerns only the equations, but
not the concept of a measurement playing a fundamental role
in the quantum mechanics[10,13]. “Measurement” is under-
stood as the process of interaction of the quantum system
with the classical object usually called “instrument.” Under
the measuring arrangement, consisting of the analyzer and
detector, one must not imagine the laboratory’s instrument.
So, the role of the analyzer plays in our case the modulating
field, which is capable to “drag” the system through the
branching points. When passing through the branching point
from one area to another, the state remains unchanged. How-
ever, being an eigenstate in one area, it will not be an eigen-
state in another. At the passage through branching points
there occurs a spectral expansion of the initial wave function
belonging to the region of one symmetry over the eigenfunc-
tions belonging to the region of another symmetry. The pres-
ence only of the analyzer reserves a pure state and the pro-
cess remains reversible. However, further we shall assume
the presence of the detector, defining which of the states,cn

+

or cn
−, is involved in passage. The transition of the system to

various states defined by probabilities(100) is fixed by
means of the action of the detector. The presence of the
detector is expressed formally in averaging with respect to
phase and neglecting the interference term usually appearing
in the expression for a distribution function. As a result of
averaging the partial loss of information about the condition
of the system takes place and a mixed state is generated.
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As it follows from Eq. (99), after the quarter period de-
generated rotary statesc2n

+ andc2n
− will be occupied with the

identical probability. After the half period12T the system
again appears in the areaG going through the branching
point l−

n in the reverse direction. In so doing probabilities for
the transitions into the statece2n as well as inse2n will be
distinct from zero,

Psc2n
± → ce2nd =

1

2* 1

p
E
o

2p

fce2nswd ± ise2nswdgce2nswddw*
2

=
1

2
, s101d

Psc2n
± → se2nd =

1

2* 1

p
E
o

2p

fce2nswd ± ise2nswdgse2nswddw*
2

=
1

2
. s102d

Here we have used again normalization(20) and orthogo-
nality (100) relations. It is possible to write the transition
probability from ce2n in one of the degenerated statesc2n

±

and back in thece2n,

P−sce2n ↔ ce2nd ; P−sce2n → c2n
± → ce2nd

= Psce2n → c2n
+ dPsc2n

+ → ce2nd

+ Psce2n → c2n
− dPsc2n

− → ce2nd.

s103d

Here the first summand corresponds to the passage
through the degenerated statec2n

+ and the second one to the
passage throughc2n

− . It is easy to see with the help of previ-
ous computations(99), (101), and(102) that contributions of
these passages are identical and individually equal to 1/4.
Therefore finally we have

P−sce2n ↔ ce2nd =
1

2
. s104d

Similarly it may be shown that transition probability from
the statece2n in one of the degenerated statesc2n

± and back in
the areaG, in statese2n by means of going through the point
l−
n is

P−sce2n ↔ se2nd = Psce2n → c2n
+ dPsc2n

+ → se2nd + Psce2n

→ c2n
− dPsc2n

− → se2nd =
1

2

1

2
+

1

2

1

2
=

1

2
.

s105d

Thus the system being at the initial moment in the eigen-
statece2n at the end of the half period of modulation appears
in the mixed stater2n, in which the statesce2n andse2n are
intermixed with identical weight, and corresponding levels
are populated with identical probabilities.

After the expiration of a quarter of the cycle the system
will pass from the areaG (the stater2n ) into the areaG+,

going through the pointl+
n. In passages from the areaG+ four

states j2n
± =s1/Î2dsce2n± ise2n+1d and z2n−1

± =s1/Î2d
3sce2n−1± ise2nd take part. So, taking into consideration the
above-mentioned probabilities of transitions we get

Psr2n → j2n
± d =

1

4p*E
o

2p

fce2nswd + se2nswdg

3fce2nswd 7 ise2n+1swdgdw*
2

=
1

4
, s106d

Psr2n → z2n
± d =

1

4p*E
o

2p

fce2nswd + se2nswdg

3fce2n−1swd 7 ise2nswdgdw*
2

=
1

4
. s107d

For deriving the last expressions in addition to the nor-
malization conditions we have used the orthogonality condi-
tions [8]

E
o

2p

censwdcemswddw =E
o

2p

sen+1swdsem+1swddw = 0, mÞ n.

s108d

On the basis of Eq.(106) and(107) we conclude that after
the time 3

4T the system will be in the areaG+ in one of four
oscillatory statesj2n−1

± andz2n−1
± with the identical probabil-

ity equal to 1/4.
After one cycleT the system gets back in the areaG, from

which it started the transition from the levelce2n. Upon re-
turning, four levels,ce2n, se2n, ce2n−1, and se2n+1, will be
involved. Calculating probabilities of passages from the os-
cillatory states of the areaG+ to these four levels we obtain

Psj2n
± → ce2nd = Psj2n

± → se2n+1d = 1/2, s109d

Psj2n−1
± → se2nd = Psz2n−1

± → se2n−1d = 1/2. s110d

The probability of passages from the nondegenerated area
G+ to the area in one of the oscillatory statesj2n

± , z2n−1
± and

back in the areaG will be

P+sr2n ↔ se2nd = Psr2n → j2n
+ dPsj2n → se2n+1d + Psr2n

→ j2n
− dPsj2n

− → se2n+1d =
1

4

1

2
+

1

4

1

2
=

1

4
.

s111d

Similarly it is possible to show

P+sr2n ↔ ce2nd = P+sr2n → se2nd = P+sr2n → ce2n−1d = 1/4.

s112d
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Thus after the lapse of timeT four levels of the nonde-
generate areaG will be occupied with the identical probabili-
ties 1/4(Fig. 5).

The motion of the system upwards on energy terms will
cease upon reaching the level for which the points of the
branching in Fig. 4 are on the distance at which the condition
(93) no longer is valid. The motion of the system downwards
will be stopped upon reaching the zero level. If the system at
the initial moment is in the state 2n=N/2, then afterN/2
cycles of modulation allN levels will be occupied.

It is easy to calculate a level population for the extremely
upper and extremely lower levels. Really, the level popula-
tion for extreme levels is possible to define with the help of
a Markov chain containing only one possible trajectory in the
spectrum of Mathieu characteristics:

PSceN/2,to;seN/2+1,to +
T

2
; . . .seN,to + N

T

2
D = PSseN,to + N

T

2

← ceN−1,to + sN − 1d
T

2
D¯ PSceN/2+1,to + T ← seN/2+1,to

+
T

2
DPSseN/2+1,to +

T

2
← ceN/2,toD , s113d

whereto is an initial time. Here, when discussing the transi-
tion probabilities from one state to another, we also use a
time argument.

It is possible to write a similar chain of level population
for the extremely lower level. As the probabilities of pas-
sages, included in the right side of Eq.(113) by way of
factors, are equal to 1/2, then probabilities of an extreme
level population will bes1/2dN/2.

As to the Markovian chain for nonextreme levels, it has a
cumbersome form and we do not give it here.

Let us note that here irreversibility is conditioned by the
interaction on the system of detector in moments of time
overcoming branching pointsto+nT/2 ;sn=1,2,3. . .d. A spe-
cific property of the quantum system(quantum mathematical
pendulum) is the ability of redistribution of the energy level
populations. The numberN is the number of populated levels
and it increases with the growth of the perturbation ampli-
tudeDI. The possibility of such a consideration at first was
shown in Ref.[14].

Quantum chaos is also observed in the case of a harmonic
oscillator subjected to the action of a monochromatic wave.
It was shown in Ref.[15] that in the case of quantum chaos
the distribution of populations by energy levels is localized
and has a narrow Gaussian form[16]. In our case, we can
also say that chaos is localized at a small number of levels
which is defined by the perturbation amplitude.

An experimental demonstration of the above-described
situation of population creeping is rather difficult because of
the multiple action of detectors at moments when the system
happens to be in degenerate states. As is known, each action
of a detector on the system entails(at least partial) suppres-
sion of the natural course of the system development. It is
obvious that the creation of a detector able to discriminate
between degenerate states is also connected with a difficulty.
That is why below we will try to show that it is possible to
obtain a picture of population creeping without using a de-
tector.

B. Irreversible phenomena produced by a big phase
“incursion” of the probability amplitude

Different from the area of nondegenerate statesG [see Eq.
(96)], in the area of degenerate statesG− andG+, the nondi-

agonal matrix elements of perturbationĤ8std [Eq. (97)] are
not zero:

H+−8 = H−+8 = kc+uĤ8stduc−l , E
o

2p

c+c−
* cos 2wdw Þ 0,

s114d

where the wave functionsc± have been defined previously
by Eqs.(37) and (38). Here, for the brevity of the notation,
we omit the upper indices indicating the quantum state. An

explicit dependence ofĤ8std on time given by the multiplier
cosnt is assumed to be slower as compared with the period
of passages from one degenerate state to another produced
by the nondiagonal matrix elementsH+−8 . Therefore below,

perturbationsĤ8std will be treated as time-independent per-
turbations able to produce the above-mentioned passages.

Therefore in the area of degenerate states the system can
be found in the time-dependent superposition state[10,13]:

cstd = C+stdc+ + C−stdc−. s115d

Probability amplitudesC±std are found by means of the
following fundamental quantum-mechanical equation ex-
pressing the causality principle:

5− i"
] C+

] t
= sEo + H++8 dC+ + H+−8 C−,

− i"
] C−

] t
= H+−8 C+ + sEo + H−−8 dC−.

s116d

By analogy with Eq.(45) and (46) in the case of our
problem it should be assumed thatH++8 =H−−8 andH+−8 =H−+8 .
Let us investigate changes occurring in the state during the
time DT while the system is in the areaG− (i.e., during the

FIG. 5. The fragment of the energy terms, participating in pas-
sages calculated in the text.(a) The initial state. The particle is in
the state ofce2n. (b) The final state. Levels which are affected by a
change of the field amplitude get populated.
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time of movement to the left froml−
n and, reversal, to the

right to l−
n). It will be assumed thatDT is part of the period of

modulationT.
For arbitrary initial values the system of equations(116)

has a solution

C+std =
C+s0d + C−s0d

2
expF− i

"
sE − H8dtG

+
C+s0d − C−s0d

2
expF i

"
sE − H8dtG ,

C−std =
C+s0d + C−s0d

2
expF− i

"
sE − H8dtG

−
C+s0d − C−s0d

2
expF i

"
sE − H8dtG , s117d

whereE→Eo+H++8 , E→Eo+H−−8 , H+−8 →H8.
After complementingH8 in Eq. (117) with the factor

cosnt, we can take into consideration also a slow time-
dependent change of perturbationsH8→H8cosntd.

Let the movement begin from the statec− of a nondegen-
erate area in the close vicinity of a branching point. Then we
should take

C−s0d = 1, C+s0d = 0 s118d

as initial conditions.
Substituting Eq.(118) into Eq. (117), for the amplitudes

C±std we obtain

C−std = esi/"dEtcosSH8

"
tD ,

C+std = − iesi/"dEtsinSH8

"
tD . s119d

Now, using Eq.(119), for the distribution ucstdu2 [Eq.
(115)] we obtain

ucstdu2 = cos2SH8

"
tDuc−u2 + sin2SH8

"
tDuc+u2 −

1

2
sinS2

H8

"
tD

3fc+stdc−
* std − c−stdc+

* stdg. s120d

In the expression forucstdu2 the first two terms correspond
to the transition probabilities −→+ and +→−, respectively,
while the third term corresponds to the interference of these
states. Distribution(120) corresponds to a pure state.

Note that(like any other parameter of the problem) the
valueH8 contains a certain small errordH8!H8, which dur-
ing the time of one passage 2p" /H8 leads to an insignificant
correction of the phase 2psdH8 /H8d. However, during the
time DT a phase incursion takes place and a small errordH8
may lead to uncertainty of phase,sdH8 /"dDT which may
turn out to be of order 2p. In that case the phase becomes
random. Therefore by the momentDT the distribution takes
the form that can be obtained from Eq.(120) by means of
averaging with respect to the random phasea=sdH8 /"dDT.

Hence, after averaging expression(120), equating the inter-
ference term to zero and taking into account that
sin2fsH8 /"dtg=cos2fsH8 /"dtg=1/2 we get

ucu2 = ucstdu2 = 1
2suc+u2 + uc−u2d, s121d

where the stroke above denotes the averaging with respect to
time. The obtained formula(121) is the distribution of a
mixed state, which contains probabilities of degenerate states
uc±u2 with the same weights 1/2. The assumption that a large
phase is a random value that, after averaging, makes the
interference term equal to zero is frequently used in analo-
gous situations[13].

Thus we conclude that if the system remains in the areas
G± of degenerate states for a long time,DT@2p" /H8 , DT
<2p" /dH8, during which the system manages to perform a
great number of passages, then in the case of a passage to the
nondegenerate areaG the choice of continuation of the path
becomes ambiguous. In other words, having reached the
branch point, the system may with the same probability con-
tinue the path along two possible branches of the Mathieu
characteristics. The errordH8 is evidently connected with the
error of the modulation amplitude value. It obviously follows
that, when passing the branch point, the mixed state(121)
will transform with a 1/2 probability to the statesceswd and
seswd, as shown in formulas(101) and (102). Analogously,
we can prove the validity of all subsequent formulas for the
passage probabilities(103)–(112).

VII. CONCLUSIONS

The quantum-mechanical investigation of the universal
Hamiltonian(mathematical pendulum), which is reduced to
the investigation of the Mathieu-Schrodinger equation,
showed that on the planesE, ld there exist three areas
G+, G−, andG (see Fig. 2 and 4) differing from each other in
their quantum properties. Motion in the area of degenerate
statesG− is a quantum analog of rotatory motion of the pen-
dulum, while motion in the area of degenerate statesG+ is an
analog of oscillatory motion of the pendulum. The areaG
lying betweenG− and G+ can be regarded as a quantum
analog of the classical separatrix. The main quantum pecu-
liarity of the universal Hamiltonian is the appearance of
branching and merging points along energy term lines.
Branching and merging points define the boundaries between
the degenerate areasG± and the nondegenerate areaG. If the
system defined by the universal Hamiltonian is perturbed by
a slowly changing periodic field, then on the planesE, ld the
influence of this field produces the motion of the system
along the Mathieu characteristics. If, moreover, the system is
in degenerate areas for a sufficiently long time, then the
phase incursion of wave function phases occurs while the
system passes through branching points, which leads to the
transition from the pure state to the mixed one. As a result of
a multiple passage through branching points, the populations
creep by energy terms(Fig. 5). The thus obtained mixed state
can be regarded as a quantum analog of the classical stochas-
tic layer. The number of levels affected by the irreversible
creeping process is defined by the amplitude of the slowly
changing field.
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